IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v25y2000i11p1139-1146.html
   My bibliography  Save this article

An analysis of the difference in CO2 emission intensity between Finland and Sweden

Author

Listed:
  • Sun, J.W.

Abstract

This paper develops a method for analyzing the difference between two subjects based on the complete decomposition model; it then analyzes the difference in CO2 emission intensity between Finland and Sweden using two different approaches. The case analysis reveals that high CO2 emission intensity in Finland is mainly due to the high proportion of fossil-fuel used in total energy consumption, and argues that choosing a reasonable and low-emission fuel mix would be highly important for the Finnish energy industry.

Suggested Citation

  • Sun, J.W., 2000. "An analysis of the difference in CO2 emission intensity between Finland and Sweden," Energy, Elsevier, vol. 25(11), pages 1139-1146.
  • Handle: RePEc:eee:energy:v:25:y:2000:i:11:p:1139-1146
    DOI: 10.1016/S0360-5442(00)00033-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544200000335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(00)00033-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B.W & Zhang, F.Q, 1999. "Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique," Energy, Elsevier, vol. 24(4), pages 297-305.
    2. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    3. Sun, J.W. & Malaska, P., 1998. "CO2 emission intensities in developed countries 1980–1994," Energy, Elsevier, vol. 23(2), pages 105-112.
    4. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    5. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    6. Li, Binsheng & Dorian, James P, 1995. "Change in China's power sector," Energy Policy, Elsevier, vol. 23(7), pages 619-626, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, J.W, 2001. "Energy demand in the fifteen European Union countries by 2010 —," Energy, Elsevier, vol. 26(6), pages 549-560.
    2. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    3. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
    4. Ebohon, Obas John & Ikeme, Anthony Jekwu, 2006. "Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries," Energy Policy, Elsevier, vol. 34(18), pages 3599-3611, December.
    5. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    6. Kaivo-oja, Jari & Luukkanen, Jyrki, 2004. "The European Union balancing between CO2 reduction commitments and growth policies: decomposition analyses," Energy Policy, Elsevier, vol. 32(13), pages 1511-1530, September.
    7. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
    8. Shumin Zhang & Yongze Lv & Jian Xu & Baolei Zhang, 2023. "Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    9. Gui, Shusen & Wu, Chunyou & Qu, Ying & Guo, Lingling, 2017. "Path analysis of factors impacting China's CO2 emission intensity: Viewpoint on energy," Energy Policy, Elsevier, vol. 109(C), pages 650-658.
    10. Luukkanen, Jyrki & Kaivo-oja, Jari, 2002. "ASEAN tigers and sustainability of energy use--decomposition analysis of energy and CO2 efficiency dynamics," Energy Policy, Elsevier, vol. 30(4), pages 281-292, March.
    11. Carlino, Laurent & Coppens, François & González, Javier & Ortega, Manuel & Pérez-Duarte, Sébastien & Rubbrecht, Ilse & Vennix, Saskia, 2017. "Decomposition techniques for financial ratios of European non-financial listed groups," Statistics Paper Series 21, European Central Bank.
    12. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    13. Luukkanen, J. & Kaivo-oja, J., 2002. "A comparison of Nordic energy and CO2 intensity dynamics in the years 1960–1997," Energy, Elsevier, vol. 27(2), pages 135-150.
    14. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    15. Ang, B. W. & Choi, Ki-Hong, 2002. "Boundary problem in carbon emission decomposition," Energy Policy, Elsevier, vol. 30(13), pages 1201-1205, October.
    16. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    17. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
    18. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    2. Luukkanen, Jyrki & Kaivo-oja, Jari, 2002. "ASEAN tigers and sustainability of energy use--decomposition analysis of energy and CO2 efficiency dynamics," Energy Policy, Elsevier, vol. 30(4), pages 281-292, March.
    3. Ebohon, Obas John & Ikeme, Anthony Jekwu, 2006. "Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries," Energy Policy, Elsevier, vol. 34(18), pages 3599-3611, December.
    4. Luukkanen, J. & Kaivo-oja, J., 2002. "A comparison of Nordic energy and CO2 intensity dynamics in the years 1960–1997," Energy, Elsevier, vol. 27(2), pages 135-150.
    5. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    6. Kaivo-oja, Jari & Luukkanen, Jyrki, 2004. "The European Union balancing between CO2 reduction commitments and growth policies: decomposition analyses," Energy Policy, Elsevier, vol. 32(13), pages 1511-1530, September.
    7. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    8. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
    9. Zhang, F. Q. & Ang, B. W., 2001. "Methodological issues in cross-country/region decomposition of energy and environment indicators," Energy Economics, Elsevier, vol. 23(2), pages 179-190, March.
    10. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    11. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    12. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
    13. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
    14. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    15. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    16. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    17. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    18. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    19. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    20. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:25:y:2000:i:11:p:1139-1146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.