IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222011811.html
   My bibliography  Save this article

A data-driven framework for characterising building archetypes: A mixed effects modelling approach

Author

Listed:
  • Palmer Real, Jaume
  • Møller, Jan Kloppenborg
  • Li, Rongling
  • Madsen, Henrik

Abstract

Building archetypes are a common solution to study the energy demand of cities and districts. These are generally based on building information such as construction year and function. However, there can be large differences in the energy demand of buildings of the same archetype due to factors such as the preferences of occupants, quality of the building construction, and unrecorded renovations. This work uses a non-linear mixed effects model to capture these random differences. The model uses weather measurements to generate the daily heating load of buildings for the whole year. The model is generated and tested using data from 56 Norwegian apartments. Results show that 91% of measurements from an out-of-sample test set fall inside the 95% prediction interval. Additionally, the model allows us to compute a proxy of the heat loss coefficient, which characterises the heating performance of the population of apartments. Finally, two sub-categories of apartments are identified by clustering the model estimates for the studied population. The model is general, computationally light and uses existing data that are commonly collected in many buildings. The suggested method offers a more robust and reliable method to segment building archetypes using only weather data and energy demand.

Suggested Citation

  • Palmer Real, Jaume & Møller, Jan Kloppenborg & Li, Rongling & Madsen, Henrik, 2022. "A data-driven framework for characterising building archetypes: A mixed effects modelling approach," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222011811
    DOI: 10.1016/j.energy.2022.124278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gholami, M. & Torreggiani, D. & Tassinari, P. & Barbaresi, A., 2021. "Narrowing uncertainties in forecasting urban building energy demand through an optimal archetyping method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Lindberg, K.B. & Bakker, S.J. & Sartori, I., 2019. "Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts," Utilities Policy, Elsevier, vol. 58(C), pages 63-88.
    3. Christoffer Rasmussen & Peder Bacher & Davide Calì & Henrik Aalborg Nielsen & Henrik Madsen, 2020. "Method for Scalable and Automatised Thermal Building Performance Documentation and Screening," Energies, MDPI, vol. 13(15), pages 1-23, July.
    4. Hammarsten, Stig, 1987. "A critical appraisal of energy-signature models," Applied Energy, Elsevier, vol. 26(2), pages 97-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffer Rasmussen & Niels Lassen & Peder Bacher & Tor Helge Dokka & Henrik Madsen, 2023. "Data-Driven Estimation of Time-Varying Stochastic Effects on Building Heat Consumption Related to Human Interactions," Energies, MDPI, vol. 16(16), pages 1-22, August.
    2. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Allard, I. & Olofsson, T. & Hassan, O.A.B., 2013. "Methods for energy analysis of residential buildings in Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 306-318.
    4. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    5. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    6. Christoffer Rasmussen & Peder Bacher & Davide Calì & Henrik Aalborg Nielsen & Henrik Madsen, 2020. "Method for Scalable and Automatised Thermal Building Performance Documentation and Screening," Energies, MDPI, vol. 13(15), pages 1-23, July.
    7. Santu Golder & Ramadas Narayanan & Md. Rashed Hossain & Mohammad Rofiqul Islam, 2021. "Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    8. Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
    9. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    10. Nikolaos Barmparesos & Dimitra Papadaki & Michalis Karalis & Kyriaki Fameliari & Margarita Niki Assimakopoulos, 2019. "In Situ Measurements of Energy Consumption and Indoor Environmental Quality of a Pre-Retrofitted Student Dormitory in Athens," Energies, MDPI, vol. 12(11), pages 1-19, June.
    11. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    12. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
    13. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    14. Backe, Stian & Kara, Güray & Tomasgard, Asgeir, 2020. "Comparing individual and coordinated demand response with dynamic and static power grid tariffs," Energy, Elsevier, vol. 201(C).
    15. Mansoureh Gholami & Daniele Torreggiani & Patrizia Tassinari & Alberto Barbaresi, 2022. "Developing a 3D City Digital Twin: Enhancing Walkability through a Green Pedestrian Network (GPN) in the City of Imola, Italy," Land, MDPI, vol. 11(11), pages 1-13, October.
    16. Ingrid Allard & Thomas Olofsson & Gireesh Nair, 2017. "Energy Performance Indicators in the Swedish Building Procurement Process," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
    17. Guo, Jiacheng & Zhang, Peiwen & Wu, Di & Liu, Zhijian & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua, 2022. "Multi-objective optimization design and multi-attribute decision-making method of a distributed energy system based on nearly zero-energy community load forecasting," Energy, Elsevier, vol. 239(PC).
    18. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    19. Hofmann, Matthias & Lindberg, Karen Byskov, 2024. "Evidence of households' demand flexibility in response to variable hourly electricity prices – Results from a comprehensive field experiment in Norway," Energy Policy, Elsevier, vol. 184(C).
    20. Kılkış, Şiir, 2023. "Integrated urban scenarios of emissions, land use efficiency and benchmarking for climate neutrality and sustainability," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222011811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.