IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v24y1999i2p117-131.html
   My bibliography  Save this article

Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies

Author

Listed:
  • Bisio, G
  • Rubatto, G

Abstract

The phenomena of acoustical pressure oscillations generated in a gas by a steady heat source may be separated into two distinct types: (i) Sondhauss oscillations which occur in a pipe having one end closed and one open; (ii) Rijke oscillations which occur in a pipe with both ends open. After reviewing representative literature, actual and possible applications are described. Analogies and differences among these and similar systems are considered from a thermodynamic point of view.

Suggested Citation

  • Bisio, G & Rubatto, G, 1999. "Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies," Energy, Elsevier, vol. 24(2), pages 117-131.
  • Handle: RePEc:eee:energy:v:24:y:1999:i:2:p:117-131
    DOI: 10.1016/S0360-5442(98)00090-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544298000905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(98)00090-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markides, Christos N. & Gupta, Ajay, 2013. "Experimental investigation of a thermally powered central heating circulator: Pumping characteristics," Applied Energy, Elsevier, vol. 110(C), pages 132-146.
    2. Zhao, Dan & Li, Shen & Zhao, He, 2016. "Entropy-involved energy measure study of intrinsic thermoacoustic oscillations," Applied Energy, Elsevier, vol. 177(C), pages 570-578.
    3. Sun, Daming & Xu, Ya & Chen, Haijun & Shen, Qie & Zhang, Xuejun & Qiu, Limin, 2013. "Acoustic characteristics of a mean flow acoustic engine capable of wind energy harvesting: Effect of resonator tube length," Energy, Elsevier, vol. 55(C), pages 361-368.
    4. Zhang, Zhiguo & Zhao, Dan & Li, S.H. & Ji, C.Z. & Li, X.Y. & Li, J.W., 2015. "Transient energy growth of acoustic disturbances in triggering self-sustained thermoacoustic oscillations," Energy, Elsevier, vol. 82(C), pages 370-381.
    5. Jakub Kajurek & Artur Rusowicz, 2020. "Experimental Investigation on the Thermoacoustic Effect in Easily Accessible Porous Materials," Energies, MDPI, vol. 14(1), pages 1-10, December.
    6. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    7. Wang, Kai & Sun, Daming & Xu, Ya & Zou, Jiang & Zhang, Xiaobin & Qiu, Limin, 2014. "Operating characteristics of thermoacoustic compression based on alternating to direct gas flow conversion," Energy, Elsevier, vol. 75(C), pages 338-348.
    8. Li, Xinyan & Zhao, Dan & Yang, Xinglin & Wen, Huabing & Jin, Xiao & Li, Shen & Zhao, He & Xie, Changqing & Liu, Haili, 2016. "Transient growth of acoustical energy associated with mitigating thermoacoustic oscillations," Applied Energy, Elsevier, vol. 169(C), pages 481-490.
    9. Chun, Wongee & Oh, Seung Jin & Lee, Yoon Joon & Lim, Sang Hoon & Surathu, Rohit & Chen, Kuan, 2012. "Acoustic waves generated by a TA (ThermoAcoustic) laser pair," Energy, Elsevier, vol. 45(1), pages 541-545.
    10. Zhang, Zhiguo & Zhao, Dan & Dobriyal, R. & Zheng, Youqu & Yang, Wenming, 2015. "Theoretical and experimental investigation of thermoacoustics transfer function," Applied Energy, Elsevier, vol. 154(C), pages 131-142.
    11. Li, Xinyan & Zhao, Dan & Yang, Xinglin, 2017. "Experimental and theoretical bifurcation study of a nonlinear standing-wave thermoacoustic system," Energy, Elsevier, vol. 135(C), pages 553-562.
    12. Zhao, Dan & Ji, Chenzhen & Li, Shihuai & Li, Junwei, 2014. "Thermodynamic measurement and analysis of dual-temperature thermoacoustic oscillations for energy harvesting application," Energy, Elsevier, vol. 65(C), pages 517-526.
    13. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    14. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    15. Zhao, Dan & Ji, Chenzhen & Teo, C. & Li, Shihuai, 2014. "Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air," Energy, Elsevier, vol. 74(C), pages 99-108.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:24:y:1999:i:2:p:117-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.