IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222003085.html
   My bibliography  Save this article

The organic Rankine cycle: A promising technology for electricity generation and thermal pollution mitigation

Author

Listed:
  • Escalante, Edwin Santiago Rios
  • Balestieri, José Antônio Perrella
  • de Carvalho, João Andrade

Abstract

Waste heat emissions derived from cooling systems of the thermal power plant often discharged into rivers, lakes and seas, have been the direct cause of environmental problems for marine life. To control these wastewater discharges into the receptor water body, government regulations have been created to act as limiting factors for additional power generation from these plants. The problem can be solved with an organic Rankine cycle (ORC), which is considered a promising technology in electricity generation and an alternative to avoid the thermal pollution of aquatic ecosystems. The present work analyzes the use of an ORC system aiming to increase the thermal and overall efficiency of conventional operating systems without causing an additional thermal impact on marine species. This evaluation was based on the first and second laws of thermodynamics, applied to seven organic fluids (toluene, methanol, benzene, R11, R12, R113, R134a) and equations that linked the overall efficiency of the power plant with parameters of life quality in the rivers. Results showed that among the chosen organic fluids benzene produced the highest thermal efficiency for the ORC. Besides, an application of the proposed modelling in a thermal power plant localized near to Tubarão river, SC – Brazil was presented. Results showed that by using R113 as working fluid, it is possible to generate up to 1365.02 kWelec of additional electrical energy and increase both thermal and overall efficiency of a thermal power plant by up to 22.34% and 11.01%, respectively, without causing a thermal impact on the aquatic ecosystem. The best energy use was achieved by the recuperative ORC configuration. The Dissolved Oxygen Concentration (DOC) was reduced to 6.14 %day−1, which is consistent with the regulation of the Brazilian government regarding effluent discharges in lagoons, rivers and seas. On the other hand, considering the electricity cost at 0.16 US$kWh−1 and 5% as an annual percentage rate (APR), results in a payback period of approximately 5.3 years. Thus, the specific investment cost (SIC) of this technology was estimated at 1314.57 US$kWe−1.

Suggested Citation

  • Escalante, Edwin Santiago Rios & Balestieri, José Antônio Perrella & de Carvalho, João Andrade, 2022. "The organic Rankine cycle: A promising technology for electricity generation and thermal pollution mitigation," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003085
    DOI: 10.1016/j.energy.2022.123405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xiaofeng & Jiang, Hui & Wang, Huina & Zhao, Juanjuan & Qiu, Quanyi & Tapper, Nigel & Hua, Lizhong, 2013. "Remotely sensed thermal pollution and its relationship with energy consumption and industry in a rapidly urbanizing Chinese city," Energy Policy, Elsevier, vol. 57(C), pages 398-406.
    2. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    3. Badr, O. & Probert, D. & O'Callaghan, P.W., 1986. "Selection of operating conditions and optimisation of design parameters for multi-vane expanders," Applied Energy, Elsevier, vol. 23(1), pages 1-46.
    4. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Javanshir, Alireza & Sarunac, Nenad, 2017. "Thermodynamic analysis of a simple Organic Rankine Cycle," Energy, Elsevier, vol. 118(C), pages 85-96.
    6. Raptis, Catherine E. & Pfister, Stephan, 2016. "Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems," Energy, Elsevier, vol. 97(C), pages 46-57.
    7. F. Tchanche, Bertrand & Pétrissans, M. & Papadakis, G., 2014. "Heat resources and organic Rankine cycle machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1185-1199.
    8. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    9. Morais, Pedro Henrique da Silva & Lodi, Andressa & Aoki, Adriana Cristine & Modesto, Marcelo, 2020. "Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant," Renewable Energy, Elsevier, vol. 157(C), pages 1131-1147.
    10. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    11. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    12. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    13. Paulino, Regina Franciélle Silva & Essiptchouk, Alexei Mikhailovich & Silveira, José Luz, 2020. "The use of syngas from biomedical waste plasma gasification systems for electricity production in internal combustion: Thermodynamic and economic issues," Energy, Elsevier, vol. 199(C).
    14. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srivastava, Mayank & Sarkar, Jahar & Sarkar, Arnab & Maheshwari, N.K. & Antony, A., 2024. "Thermo-economic feasibility study to utilize ORC technology for waste heat recovery from Indian nuclear power plants," Energy, Elsevier, vol. 298(C).
    2. Sirimanna, M.P.G. & Nixon, J.D., 2024. "Energy cost optimization of Linear Fresnel Reflector (LFR) systems for different regions of installation," Energy, Elsevier, vol. 306(C).
    3. Yang, Weixin & Yang, Yunpeng & Chen, Hongmin, 2022. "How to stimulate Chinese energy companies to comply with emission regulations? Evidence from four-party evolutionary game analysis," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    2. Sanjay Mukherjee & Abhishek Asthana & Martin Howarth & Jahedul Islam Chowdhury, 2020. "Techno-Economic Assessment of Waste Heat Recovery Technologies for the Food Processing Industry," Energies, MDPI, vol. 13(23), pages 1-26, December.
    3. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    4. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    5. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    6. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    7. Zhang, Jianhua & Lin, Mingming & Fang, Fang & Xu, Jinliang & Li, Kang, 2016. "Gain scheduling control of waste heat energy conversion systems based on an LPV (linear parameter varying) model," Energy, Elsevier, vol. 107(C), pages 773-783.
    8. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.
    9. Peris, Bernardo & Navarro-Esbrí, Joaquín & Mateu-Royo, Carlos & Mota-Babiloni, Adrián & Molés, Francisco & Gutiérrez-Trashorras, Antonio J. & Amat-Albuixech, Marta, 2020. "Thermo-economic optimization of small-scale Organic Rankine Cycle: A case study for low-grade industrial waste heat recovery," Energy, Elsevier, vol. 213(C).
    10. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    11. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    12. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    13. Sung, Taehong & Yun, Eunkoo & Kim, Hyun Dong & Yoon, Sang Youl & Choi, Bum Seog & Kim, Kuisoon & Kim, Jangmok & Jung, Yang Beom & Kim, Kyung Chun, 2016. "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant," Applied Energy, Elsevier, vol. 183(C), pages 623-635.
    14. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    15. Shao, Long & Ma, Xinling & Wei, Xinli & Hou, Zhonglan & Meng, Xiangrui, 2017. "Design and experimental study of a small-sized organic Rankine cycle system under various cooling conditions," Energy, Elsevier, vol. 130(C), pages 236-245.
    16. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    17. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    18. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    19. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    20. Sarkar, Jahar & Bhattacharyya, Souvik, 2015. "Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study," Energy, Elsevier, vol. 90(P2), pages 1618-1625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.