IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001153.html
   My bibliography  Save this article

A comprehensive life cycle assessment study of innovative bifacial photovoltaic applied on building

Author

Listed:
  • Li, Zihao
  • Zhang, Wei
  • He, Bo
  • Xie, Lingzhi
  • Chen, Mo
  • Li, Jianhui
  • Zhao, Oufan
  • Wu, Xin

Abstract

Bifacial photovoltaic (BPV) module is a new type of photovoltaic module. Compared with mono-facial module, it can not only rely on the direct solar radiation on the front side, but also utilize the reflected solar radiation on the back side to generate electricity, and which can greatly improve the power generation. In this article, the BPV module was innovatively applied on building, and a demonstration building was designed and set up. The building includes the diversification of forms and reflection utilization. The BPV module improved power generation performance by 10.7%–12.7% compared with the mono-facial module. The inclined roof with building surface reflection has better power generation efficiency than the integrated form of building envelope with indoor reflection. Combined with the experimental test, simulation and enterprise investigation, a multi-index life cycle assessment (LCA) method for BPV modules applied on buildings is established, and include the economic, energy and environmental indicators. The application potential of different forms of BPV modules is analyzed and compared with mono-facial module. The energy payback time (EPBT) and greenhouse gas payback time (GPBT) of BPV solar house were 6.6 and 2.3 years, while the EPBT and GPBT of BPV inclined roof were 5.0 and 1.7 years. The economic analysis shows that BPV applied on building can compensate for all the input cost and even have more additional benefits. Compared with mono-facial module, BPV modules have higher benefits in all aspects. According to the LCA results, the optimization suggestions for the BPV demonstration building are given.

Suggested Citation

  • Li, Zihao & Zhang, Wei & He, Bo & Xie, Lingzhi & Chen, Mo & Li, Jianhui & Zhao, Oufan & Wu, Xin, 2022. "A comprehensive life cycle assessment study of innovative bifacial photovoltaic applied on building," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001153
    DOI: 10.1016/j.energy.2022.123212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    2. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    3. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Validation of the Sandia model with indoor and outdoor measurements for semi-transparent amorphous silicon PV modules," Renewable Energy, Elsevier, vol. 80(C), pages 316-323.
    4. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    5. Bany Mousa, Osama & Kara, Sami & Taylor, Robert A., 2019. "Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors," Applied Energy, Elsevier, vol. 241(C), pages 113-123.
    6. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    7. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).
    2. Barbara Marchetti & Matteo Vitali & Giovanni Biancini, 2024. "Renewable Energy Proliferation and the New Local Energy Community Paradigm: Analysis of a Case Study in Italy," Energies, MDPI, vol. 17(7), pages 1-16, March.
    3. Guo, Xiaopeng & Dong, Yining & Ren, Dongfang, 2023. "CO2 emission reduction effect of photovoltaic industry through 2060 in China," Energy, Elsevier, vol. 269(C).
    4. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    5. Florentin Salomez & Hugo Helbling & Morgan Almanza & Ulrich Soupremanien & Guillaume Viné & Adrien Voldoire & Bruno Allard & Hamid Ben-Ahmed & Daniel Chatroux & Antoine Cizeron & Mylène Delhommais & M, 2024. "State of the Art of Research towards Sustainable Power Electronics," Sustainability, MDPI, vol. 16(5), pages 1-23, March.
    6. Manfredi Picciotto Maniscalco & Sonia Longo & Gabriele Miccichè & Maurizio Cellura & Marco Ferraro, 2023. "A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-18, December.
    7. Chunying Li & Wankun Zhang & Fang Liu & Xiaoyu Li & Jingwei Wang & Cuimin Li, 2024. "Multi-Objective Optimization of Bifacial Photovoltaic Sunshade: Towards Better Optical, Electrical and Economical Performance," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    8. Su, Xing & Xu, Zehan & Tian, Shaochen & Chen, Chaoyang & Huang, Yixiang & Geng, Yining & Chen, Junfeng, 2023. "Life cycle assessment of three typical solar energy utilization systems in different regions of China," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Zhao, Oufan & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhong, Jianmei & Zeng, Xiding & Zou, Ruiwen, 2023. "Factors influence analysis and life cycle assessment of innovative bifacial photovoltaic applied on building facade," Energy, Elsevier, vol. 279(C).
    2. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    3. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    4. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    5. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    7. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    8. Cheng, Yuanda & Gao, Min & Jia, Jie & Sun, Yanyi & Fan, Yi & Yu, Min, 2019. "An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China," Energy, Elsevier, vol. 170(C), pages 356-366.
    9. Muath Bani Salim & Dervis Emre Demirocak & Nael Barakat, 2018. "A Fuzzy Based Model for Standardized Sustainability Assessment of Photovoltaic Cells," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    10. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    11. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    12. Zhong, Jianmei & Zhang, Wei & Xie, Lingzhi & Zhao, Oufan & Wu, Xin & Zeng, Xiding & Guo, Jiahong, 2023. "Development and challenges of bifacial photovoltaic technology and application in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    13. Joaquim Romaní & Alba Ramos & Jaume Salom, 2022. "Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations," Energies, MDPI, vol. 15(9), pages 1-30, April.
    14. Chen, Mo & Zhang, Wei & Xie, Lingzhi & Ni, Zhichun & Wei, Qingzhu & Wang, Wei & Tian, Hao, 2019. "Experimental and numerical evaluation of the crystalline silicon PV window under the climatic conditions in southwest China," Energy, Elsevier, vol. 183(C), pages 584-598.
    15. Patel, M. Tahir & Vijayan, Ramachandran A. & Asadpour, Reza & Varadharajaperumal, M. & Khan, M. Ryyan & Alam, Muhammad A., 2020. "Temperature-dependent energy gain of bifacial PV farms: A global perspective," Applied Energy, Elsevier, vol. 276(C).
    16. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    17. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
    19. Johnson, Joji & Manikandan, S., 2023. "Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones," Energy, Elsevier, vol. 284(C).
    20. Ganesan, K. & Winston, D. Prince & Nesamalar, J. Jeslin Drusila & Pravin, M., 2024. "Output power enhancement of a bifacial solar photovoltaic with upside down installation during module defects," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.