IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031017.html
   My bibliography  Save this article

Study on slagging in a waste-heat recovery boiler associated with a bottom-blown metal smelting furnace

Author

Listed:
  • Zhang, Dongjie
  • Ma, Ting

Abstract

Bottom-blown smelting furnace is an efficient and environmentally friendly technology, and is known for the high adaptability to complex resources and high recovery of valuable metals. Its associated waste-heat recovery boiler (WHRB) cools the fume for cleansing and recovers heat for conserving energy. It is still considered as a developing technology and more studies are required to enhance the connection with the furnace to increase its operation safety and the operation rate. In this study, the WHRB associated with a bottom-blown smelting furnace was examined using experimental and numerical methods to solve its slagging, low-temperature corrosion, and air or fume leakage problems. The slagging mechanism was determined by detecting the characteristics of the slag. The improved hood of the WHRB was designed to control the air and fume leakage for solving the slagging problem. An optimal construction of the radiation cavity was realized using a numerical method to improve the flow pattern and temperature fields. This in turn can prevent molten slag formation and enhance the heat transfer performance of the WHRB. The operating rate of the smelting system was increased from 89.3% to 92.5%. The results can aid in developing green and highly efficient processes in the metallurgical industry.

Suggested Citation

  • Zhang, Dongjie & Ma, Ting, 2022. "Study on slagging in a waste-heat recovery boiler associated with a bottom-blown metal smelting furnace," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031017
    DOI: 10.1016/j.energy.2021.122852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    2. Dongxing Wang & Yan Liu & Zimu Zhang & Pin Shao & Ting’an Zhang, 2016. "Dimensional Analysis of Average Diameter of Bubbles for Bottom Blown Oxygen Copper Furnace," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-8, August.
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    2. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    3. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Saletti, Costanza & Morini, Mirko & Gambarotta, Agostino, 2022. "Smart management of integrated energy systems through co-optimization with long and short horizons," Energy, Elsevier, vol. 250(C).
    5. Danko Vidović & Elis Sutlović & Matislav Majstrović, 2021. "A Unique Electrical Model for the Steady-State Analysis of a Multi-Energy System," Energies, MDPI, vol. 14(18), pages 1-23, September.
    6. Conlon, Terence & Waite, Michael & Wu, Yuezi & Modi, Vijay, 2022. "Assessing trade-offs among electrification and grid decarbonization in a clean energy transition: Application to New York State," Energy, Elsevier, vol. 249(C).
    7. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    8. Yang, Chen & Li, Peng & Yu, Jia & Zhao, Li-Da & Kong, Long, 2020. "Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations," Energy, Elsevier, vol. 201(C).
    9. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    10. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tariq, Mohd, 2021. "Experimental verification of a flexible vehicle-to-grid charger for power grid load variance reduction," Energy, Elsevier, vol. 228(C).
    11. Stella Oberle & Marius Neuwirth & Till Gnann & Martin Wietschel, 2022. "Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study," Energies, MDPI, vol. 15(24), pages 1-20, December.
    12. Shahparasti, Mahdi & Rajaei, Amirhossein & Tarrassó, Andres & Luna, Alvaro, 2022. "A multi-output AC/DC energy conversion system for grid integration of bioelectrochemical power-to-gas storage," Energy, Elsevier, vol. 249(C).
    13. Faridpak, Behdad & Farrokhifar, Meisam & Murzakhanov, Ilgiz & Safari, Amin, 2020. "A series multi-step approach for operation Co-optimization of integrated power and natural gas systems," Energy, Elsevier, vol. 204(C).
    14. Genovese, M. & Piraino, F. & Fragiacomo, P., 2024. "3E analysis of a virtual hydrogen valley supported by railway-based H2 delivery for multi-transportation service," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Leitner, Benedikt & Widl, Edmund & Gawlik, Wolfgang & Hofmann, René, 2020. "Control assessment in coupled local district heating and electrical distribution grids: Model predictive control of electric booster heaters," Energy, Elsevier, vol. 210(C).
    16. Mu, Lianbo & Wang, Suilin & Lu, Junhui & Liu, Guichang & Zhao, Liqiu & Lan, Yuncheng, 2023. "Effect of flue gas condensing waste heat recovery and its pressure drop on energy saving and carbon reduction for refinery heating furnace," Energy, Elsevier, vol. 279(C).
    17. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    18. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Zhou, Jing & Zhang, Li & Fan, Lin & Yang, Zhaoming & Xie, Fei & Zuo, Lili & Zhang, Jinjun, 2023. "A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model," Energy, Elsevier, vol. 263(PB).
    20. Arnaudo, Monica & Dalgren, Johan & Topel, Monika & Laumert, Björn, 2021. "Waste heat recovery in low temperature networks versus domestic heat pumps - A techno-economic and environmental analysis," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.