IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221027547.html
   My bibliography  Save this article

Bilevel load-agent-based distributed coordination decision strategy for aggregators

Author

Listed:
  • Wu, Hongbin
  • Wang, Jingjie
  • Lu, Junhua
  • Ding, Ming
  • Wang, Lei
  • Hu, Bin
  • Sun, Ming
  • Qi, Xianjun

Abstract

This paper addresses the risk faced by load aggregators (LAs) participating in a demand response (DR), owing to the response uncertainty, and proposes a load-agent-based bilevel distributed coordination decision-making strategy for LAs considering response uncertainty. DR uncertainty models of reducible and transferable loads are established based on the evidence theory. The agent DR uncertainty model is established through individual user DR characteristic clustering. The conditional value at risk is used as a measure of risk, and a two-hierarchical-decision model of the LA is established. The model is decoupled by introducing decoupling variables and is solved using the analytical target cascading method, owing to the coupling relationship of the bilayer decision model. The results of the example show that the computing time of the distributed scheduling method proposed in this paper is 91.54 % shorter than that of the centralized scheduling method. Compared with the traditional distributed scheduling strategy, under the condition of comparable computing efficiency, the risk cost expectations of LAs is lower after clustering processing. The proposed model can reasonably evaluate uncertain events in the DR and realize decentralized coordination optimization between the upper and lower layers of decision-making, which helps LAs to effectively improve the decision-making efficiency.

Suggested Citation

  • Wu, Hongbin & Wang, Jingjie & Lu, Junhua & Ding, Ming & Wang, Lei & Hu, Bin & Sun, Ming & Qi, Xianjun, 2022. "Bilevel load-agent-based distributed coordination decision strategy for aggregators," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027547
    DOI: 10.1016/j.energy.2021.122505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Jimyung Kang & Soonwoo Lee, 2018. "Data-Driven Prediction of Load Curtailment in Incentive-Based Demand Response System," Energies, MDPI, vol. 11(11), pages 1-14, October.
    3. Wang, Fei & Ge, Xinxin & Yang, Peng & Li, Kangping & Mi, Zengqiang & Siano, Pierluigi & Duić, Neven, 2020. "Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing," Energy, Elsevier, vol. 213(C).
    4. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    5. Yunpeng Guo & Weijia Liu & Fushuan Wen & Abdus Salam & Jianwei Mao & Liang Li, 2017. "Bidding Strategy for Aggregators of Electric Vehicles in Day-Ahead Electricity Markets," Energies, MDPI, vol. 10(1), pages 1-20, January.
    6. Wu, Xin & Liang, Kaixin & Jiao, Dian, 2019. "Air conditioner group collaborative method under multi-layer information interaction structure," Energy, Elsevier, vol. 186(C).
    7. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    8. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    9. Wenjie Lv & Jian Wu & Zhao Luo & Min Ding & Xiang Jiang & Hejian Li & Qian Wang, 2019. "Load Aggregator-Based Integrated Demand Response for Residential Smart Energy Hubs," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Adrian Tantau & András Puskás-Tompos & Laurentiu Fratila & Costel Stanciu, 2021. "Acceptance of Demand Response and Aggregators as a Solution to Optimize the Relation between Energy Producers and Consumers in order to Increase the Amount of Renewable Energy in the Grid," Energies, MDPI, vol. 14(12), pages 1-19, June.
    4. Isaias Gomes & Rui Melicio & Victor Mendes, 2020. "Comparison between Inflexible and Flexible Charging of Electric Vehicles—A Study from the Perspective of an Aggregator," Energies, MDPI, vol. 13(20), pages 1-13, October.
    5. Wang, Zibo & Dong, Lei & Shi, Mengjie & Qiao, Ji & Jia, Hongjie & Mu, Yunfei & Pu, Tianjiao, 2023. "Market power modeling and restraint of aggregated prosumers in peer-to-peer energy trading: A game-theoretic approach," Applied Energy, Elsevier, vol. 348(C).
    6. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    7. Ali, Liaqat & Azim, M. Imran & Peters, Jan & Pashajavid, Ehsan, 2024. "Expediting battery investment returns for residential customers utilising spot price-aware local energy exchanges," Energy, Elsevier, vol. 306(C).
    8. Seong-Hyeon Cha & Sun-Hyeok Kwak & Woong Ko, 2023. "A Robust Optimization Model of Aggregated Resources Considering Serving Ratio for Providing Reserve Power in the Joint Electricity Market," Energies, MDPI, vol. 16(20), pages 1-27, October.
    9. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    10. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    11. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    12. Theo Dronne & Fabien Roques & Marcelo Saguan, 2021. "Local Flexibility Markets for Distribution Network Congestion-Management in Center-Western Europe: Which Design for Which Needs?," Energies, MDPI, vol. 14(14), pages 1-18, July.
    13. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    14. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).
    15. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    16. Khatibi, Mahmood & Rahnama, Samira & Vogler-Finck, Pierre & Dimon Bendtsen, Jan & Afshari, Alireza, 2023. "Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme," Applied Energy, Elsevier, vol. 333(C).
    17. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    18. Carmine Cancro & Camelia Delcea & Salvatore Fabozzi & Gabriella Ferruzzi & Giorgio Graditi & Valeria Palladino & Maria Valenti, 2022. "A Profitability Analysis for an Aggregator in the Ancillary Services Market: An Italian Case Study," Energies, MDPI, vol. 15(9), pages 1-26, April.
    19. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    20. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.