IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221025585.html
   My bibliography  Save this article

Independent or complementary power system configuration: A decision making approach for sustainable electrification of an urban environment in Sierra Leone

Author

Listed:
  • Konneh, Keifa Vamba
  • Masrur, Hasan
  • Konneh, David A.
  • Senjyu, Tomonobu

Abstract

Providing quality and reliable power to grid-isolated areas has long been a difficulty in Africa, particularly in Sierra Leone, where government regulations are either weak or non-existent to assist the developing endeavour. Hybrid off-grid systems have grown in popularity as a way to offer electricity to people who live remote from power grids. This strategy, on the other hand, is capital demanding and prone to interruptions. This paper considers a decision-making process based on the Government of Sierra Leone's initiative to undertake a project to provide sustainable electricity to the people of Bo and Kenema in Sierra Leone's South-eastern region, with the assistance of the Africa Development Bank (ADB) and the Department for International Development (DFID). Two operating scenarios were modeled, and a comparative study was performed to determine which of the two should be considered. The results showed that the complementary scenario's proposed optimized hybrid configuration performed best in terms of technical, economic, and environmental features. Technically, it produced an excess energy of 2.29 %, compared to the combined total of the independent scenarios with 49.4 % (15.3 % excess energy from Bo and 34.1 % from Kenema). In terms of cost, it has a net present cost (NPC) of $45.6 million (M), compared to a combined NPC of $52 M ($37.8 M for Bo and $14.2 M for Kenema) for the independent networks. In terms of the environment, it generated 2,402,380 kg/yr of CO2 which is 42 % less than the combined total produced by Bo and Kenema (3,408,018 kg/yr). Sensitivity analysis revealed that the overall system cost is heavily reliant on the diesel fuel price and average annual stream flow rate, as well as the hydro turbine's deplorable efficiency status, with the intention of project leaders' ignoring the impact of variations in the PV derating factor.

Suggested Citation

  • Konneh, Keifa Vamba & Masrur, Hasan & Konneh, David A. & Senjyu, Tomonobu, 2022. "Independent or complementary power system configuration: A decision making approach for sustainable electrification of an urban environment in Sierra Leone," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025585
    DOI: 10.1016/j.energy.2021.122310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odou, Oluwarotimi Delano Thierry & Bhandari, Ramchandra & Adamou, Rabani, 2020. "Hybrid off-grid renewable power system for sustainable rural electrification in Benin," Renewable Energy, Elsevier, vol. 145(C), pages 1266-1279.
    2. Haidar, Ahmed M.A. & John, Priscilla N. & Shawal, Mohd, 2011. "Optimal configuration assessment of renewable energy in Malaysia," Renewable Energy, Elsevier, vol. 36(2), pages 881-888.
    3. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
    4. David Abdul Konneh & Harun Or Rashid Howlader & Ryuto Shigenobu & Tomonobu Senjyu & Shantanu Chakraborty & Narayanan Krishna, 2019. "A Multi-Criteria Decision Maker for Grid-Connected Hybrid Renewable Energy Systems Selection Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 11(4), pages 1-36, February.
    5. Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
    6. Kamran, Muhammad & Asghar, Rohail & Mudassar, Muhammad & Abid, Muhammad Irfan, 2019. "Designing and economic aspects of run-of-canal based micro-hydro system on Balloki-Sulaimanki Link Canal-I for remote villages in Punjab, Pakistan," Renewable Energy, Elsevier, vol. 141(C), pages 76-87.
    7. Jahangir, Mohammad Hossein & Fakouriyan, Samaneh & Vaziri Rad, Mohammad Amin & Dehghan, Hassan, 2020. "Feasibility study of on/off grid large-scale PV/WT/WEC hybrid energy system in coastal cities: A case-based research," Renewable Energy, Elsevier, vol. 162(C), pages 2075-2095.
    8. Díaz, Guzmán & Planas, Estefanía & Andreu, Jon & Kortabarria, Iñigo, 2015. "Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty," Energy, Elsevier, vol. 88(C), pages 837-848.
    9. Nguyen, Kim Hanh & Kakinaka, Makoto, 2019. "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, Elsevier, vol. 132(C), pages 1049-1057.
    10. Hosseinalizadeh, Ramin & Shakouri G, Hamed & Amalnick, Mohsen Sadegh & Taghipour, Peyman, 2016. "Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 139-150.
    11. Kabayo, Jeremiah & Marques, Pedro & Garcia, Rita & Freire, Fausto, 2019. "Life-cycle sustainability assessment of key electricity generation systems in Portugal," Energy, Elsevier, vol. 176(C), pages 131-142.
    12. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    13. Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    14. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    15. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    16. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    17. Hasan Masrur & Harun Or Rashid Howlader & Mohammed Elsayed Lotfy & Kaisar R. Khan & Josep M. Guerrero & Tomonobu Senjyu, 2020. "Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh," Sustainability, MDPI, vol. 12(7), pages 1-27, April.
    18. Mazzola, Simone & Vergara, Claudio & Astolfi, Marco & Li, Vivian & Perez-Arriaga, Ignacio & Macchi, Ennio, 2017. "Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids," Renewable Energy, Elsevier, vol. 108(C), pages 116-125.
    19. Keifa Vamba Konneh & Hasan Masrur & Mohammad Lutfi Othman & Hiroshi Takahashi & Narayanan Krishna & Tomonobu Senjyu, 2021. "Multi-Attribute Decision-Making Approach for a Cost-Effective and Sustainable Energy System Considering Weight Assignment Analysis," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    20. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    21. Fan Yang & Ming Yang, 2018. "Rural electrification in sub-Saharan Africa with innovative energy policy and new financing models," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 933-952, August.
    22. Kumar, K. Prakash & Saravanan, B., 2017. "Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 348-358.
    23. Hasan Masrur & Keifa Vamba Konneh & Mikaeel Ahmadi & Kaisar R. Khan & Mohammad Lutfi Othman & Tomonobu Senjyu, 2021. "Assessing the Techno-Economic Impact of Derating Factors on Optimally Tilted Grid-Tied Photovoltaic Systems," Energies, MDPI, vol. 14(4), pages 1-21, February.
    24. Basir Khan, M. Reyasudin & Jidin, Razali & Pasupuleti, Jagadeesh & Shaaya, Sharifah Azwa, 2015. "Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea," Energy, Elsevier, vol. 82(C), pages 80-97.
    25. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    26. Kumar, Deepak & Katoch, S.S., 2016. "Environmental sustainability of run of the river hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 93(C), pages 599-607.
    27. Shahzad, M. Kashif & Zahid, Adeem & ur Rashid, Tanzeel & Rehan, Mirza Abdullah & Ali, Muzaffar & Ahmad, Mueen, 2017. "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software," Renewable Energy, Elsevier, vol. 106(C), pages 264-273.
    28. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    2. Neve Fields & William Collier & Fynn Kiley & David Caulker & William Blyth & Mark Howells & Ed Brown, 2024. "Long-Term Forecasting: A MAED Application for Sierra Leone’s Electricity Demand (2023–2050)," Energies, MDPI, vol. 17(12), pages 1-17, June.
    3. Tamal Chowdhury & Samiul Hasan & Hemal Chowdhury & Abul Hasnat & Ahmad Rashedi & M. R. M. Asyraf & Mohamad Zaki Hassan & Sadiq M. Sait, 2022. "Sizing of an Island Standalone Hybrid System Considering Economic and Environmental Parameters: A Case Study," Energies, MDPI, vol. 15(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konneh, Keifa Vamba & Adewuyi, Oludamilare Bode & Gamil, Mahmoud M. & Fazli, Agha Mohammad & Senjyu, Tomonobu, 2023. "A scenario-based multi-attribute decision making approach for optimal design of a hybrid off-grid system," Energy, Elsevier, vol. 265(C).
    2. Keifa Vamba Konneh & Hasan Masrur & Mohammad Lutfi Othman & Hiroshi Takahashi & Narayanan Krishna & Tomonobu Senjyu, 2021. "Multi-Attribute Decision-Making Approach for a Cost-Effective and Sustainable Energy System Considering Weight Assignment Analysis," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    3. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    4. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    5. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Demirci, Alpaslan & Öztürk, Zafer & Tercan, Said Mirza, 2023. "Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones," Energy, Elsevier, vol. 262(PA).
    7. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    8. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    9. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    10. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    11. Scheubel, Christopher & Zipperle, Thomas & Tzscheutschler, Peter, 2017. "Modeling of industrial-scale hybrid renewable energy systems (HRES) – The profitability of decentralized supply for industry," Renewable Energy, Elsevier, vol. 108(C), pages 52-63.
    12. Adoum Abdoulaye, Mahamat & Waita, Sebastian & Wabuge Wekesa, Cyrus & Mwabora, Julius Mwakondo, 2024. "Optimal sizing of an off-grid and grid-connected hybrid photovoltaic-wind system with battery and fuel cell storage system: A techno-economic, environmental, and social assessment," Applied Energy, Elsevier, vol. 365(C).
    13. Ma, Qian & Huang, Xiang & Wang, Feng & Xu, Chao & Babaei, Reza & Ahmadian, Hossein, 2022. "Optimal sizing and feasibility analysis of grid-isolated renewable hybrid microgrids: Effects of energy management controllers," Energy, Elsevier, vol. 240(C).
    14. Figaj, Rafał, 2021. "Performance assessment of a renewable micro-scale trigeneration system based on biomass steam cycle, wind turbine, photovoltaic field," Renewable Energy, Elsevier, vol. 177(C), pages 193-208.
    15. Ferahtia, Seydali & Houari, Azeddine & Cioara, Tudor & Bouznit, Mohammed & Rezk, Hegazy & Djerioui, Ali, 2024. "Recent advances on energy management and control of direct current microgrid for smart cities and industry: A Survey," Applied Energy, Elsevier, vol. 368(C).
    16. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    17. Issoufou Tahirou Halidou & Harun Or Rashid Howlader & Mahmoud M. Gamil & M. H. Elkholy & Tomonobu Senjyu, 2023. "Optimal Power Scheduling and Techno-Economic Analysis of a Residential Microgrid for a Remotely Located Area: A Case Study for the Sahara Desert of Niger," Energies, MDPI, vol. 16(8), pages 1-23, April.
    18. Das, Barun K. & Hasan, Mahmudul & Das, Pronob, 2021. "Impact of storage technologies, temporal resolution, and PV tracking on stand-alone hybrid renewable energy for an Australian remote area application," Renewable Energy, Elsevier, vol. 173(C), pages 362-380.
    19. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    20. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.