IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds036054422102541x.html
   My bibliography  Save this article

Non-linear effects of outward foreign direct investment on total factor energy efficiency in China

Author

Listed:
  • Pan, Xiongfeng
  • Chu, Junhui
  • Tian, Mengyuan
  • Li, Mengna

Abstract

China is experiencing rapid economic development where outward foreign direct investment (OFDI) ranked third globally in 2017. OFDI could affect energy efficiency in China through reverse technology spillover. However, few studies have studied the impact of OFDI on total factor energy efficiency (TFEE), notably on the non-linear relationships and potential threshold level of the variables that would impact non-linearity. A panel smooth transition regression (PSTR) model was developed to analyse the non-linear impact of OFDI (explaining variable) on TFEE (explained variable). The data from 30 provinces, municipalities and autonomous regions (except Tibet) in China from 2006 to 2017 were considered. Industrial structure, opening-up level and human capital were selected as the transition variables to analyse potential threshold levels on how OFDI would enhance TFEE. The PSTR modelling results show that increasing OFDI in China can improve TFEE where the relationship is non-linear. The thresholds for opening-up level, industrial structure and human capital are 36.11%, 37.59% and 8.33%. With the change of the industrial structure, opening-up level and the human capital, the effect of OFDI on TFEE transited slowly and smoothly between high and low regimes. The opening-up level in Fujian, Zhejiang, Tianjin, Jiangsu, Guangdong, Beijing, and Shanghai is above the threshold level. Most regions show the industrial structure and human capital levels above the threshold. This study shows the importance of developing a non-linear model to accurately evaluating the impact of OFDI in enhancing TFEE in China. The model enables policymakers to assess the thresholds of the transition variables to observe the positive effect of OFDI on TFEE.

Suggested Citation

  • Pan, Xiongfeng & Chu, Junhui & Tian, Mengyuan & Li, Mengna, 2022. "Non-linear effects of outward foreign direct investment on total factor energy efficiency in China," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s036054422102541x
    DOI: 10.1016/j.energy.2021.122293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102541X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    2. González, Andrés & Teräsvirta, Timo & van Dijk, Dick & Yang, Yukai, 2005. "Panel Smooth Transition Regression Models," SSE/EFI Working Paper Series in Economics and Finance 604, Stockholm School of Economics, revised 11 Oct 2017.
    3. Yao, Yao & Ivanovski, Kris & Inekwe, John & Smyth, Russell, 2019. "Human capital and energy consumption: Evidence from OECD countries," Energy Economics, Elsevier, vol. 84(C).
    4. Su, Hongwei & Liang, Biming, 2021. "The impact of regional market integration and economic opening up on environmental total factor energy productivity in Chinese provinces," Energy Policy, Elsevier, vol. 148(PA).
    5. Imbruno, Michele & Ketterer, Tobias D., 2018. "Energy efficiency gains from importing intermediate inputs: Firm-level evidence from Indonesia," Journal of Development Economics, Elsevier, vol. 135(C), pages 117-141.
    6. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    7. Song, Malin & Xie, Qianjiao & Shen, Zhiyang, 2021. "Impact of green credit on high-efficiency utilization of energy in China considering environmental constraints," Energy Policy, Elsevier, vol. 153(C).
    8. Ramanathan, R. & Ganesh, L. S., 1995. "Energy resource allocation incorporating qualitative and quantitative criteria: An integrated model using goal programming and AHP," Socio-Economic Planning Sciences, Elsevier, vol. 29(3), pages 197-218, September.
    9. Pan, Xiongfeng & Li, Mengna & Wang, Mengyang & Chu, Junhui & Bo, Hongguang, 2020. "The effects of outward foreign direct investment and reverse technology spillover on China's carbon productivity," Energy Policy, Elsevier, vol. 145(C).
    10. Borozan, Djula, 2018. "Technical and total factor energy efficiency of European regions: A two-stage approach," Energy, Elsevier, vol. 152(C), pages 521-532.
    11. Fisher-Vanden, Karen & Jefferson, Gary H. & Jingkui, Ma & Jianyi, Xu, 2006. "Technology development and energy productivity in China," Energy Economics, Elsevier, vol. 28(5-6), pages 690-705, November.
    12. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    13. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    14. Montalbano, P. & Nenci, S., 2019. "Energy efficiency, productivity and exporting: Firm-level evidence in Latin America," Energy Economics, Elsevier, vol. 79(C), pages 97-110.
    15. Pan, Xiongfeng & Uddin, Md. Kamal & Saima, Umme & Jiao, Zhiming & Han, Cuicui, 2019. "How do industrialization and trade openness influence energy intensity? Evidence from a path model in case of Bangladesh," Energy Policy, Elsevier, vol. 133(C).
    16. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    17. Bashir, Muhammad Adnan & Sheng, Bin & Doğan, Buhari & Sarwar, Suleman & Shahzad, Umer, 2020. "Export product diversification and energy efficiency: Empirical evidence from OECD countries," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 232-243.
    18. Wang, Ying & Chen, Xiangyuan, 2020. "Natural resource endowment and ecological efficiency in China: Revisiting resource curse in the context of ecological efficiency," Resources Policy, Elsevier, vol. 66(C).
    19. Liu, Haiyue & Wang, Yile & Jiang, Jie & Wu, Peng, 2020. "How green is the “Belt and Road Initiative”? – Evidence from Chinese OFDI in the energy sector," Energy Policy, Elsevier, vol. 145(C).
    20. Fraumeni, Barbara M. & He, Junzi & Li, Haizheng & Liu, Qinyi, 2019. "Regional distribution and dynamics of human capital in China 1985–2014," Journal of Comparative Economics, Elsevier, vol. 47(4), pages 853-866.
    21. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    22. Bampatsou, Christina & Halkos, George, 2019. "Economic growth, efficiency and environmental elasticity for the G7 countries," Energy Policy, Elsevier, vol. 130(C), pages 355-360.
    23. Luan, Bingjiang & Zou, Hong & Chen, Shuxing & Huang, Junbing, 2021. "The effect of industrial structure adjustment on China’s energy intensity: Evidence from linear and nonlinear analysis," Energy, Elsevier, vol. 218(C).
    24. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    25. Jiang, Mingrui & Luo, Sumei & Zhou, Guangyou, 2020. "Financial development, OFDI spillovers and upgrading of industrial structure," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    26. Gerlagh, Reyer & Kuik, Onno, 2014. "Spill or leak? Carbon leakage with international technology spillovers: A CGE analysis," Energy Economics, Elsevier, vol. 45(C), pages 381-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Hui & Lu, Yaobin & Wang, Qunwei, 2023. "How does heterogeneous industrial agglomeration affect the total factor energy efficiency of China's digital economy," Energy, Elsevier, vol. 268(C).
    2. Du, Weijian & Li, Mengjie, 2023. "Opening the black box of environmental governance: Environmental target constraints and industrial firm pollution reduction," Energy, Elsevier, vol. 283(C).
    3. Huang, Xiaoli & Huang, Xiaohua, 2023. "Impact of Chinese financial development on OFDI reverse technology spillovers: Evidence from China," Finance Research Letters, Elsevier, vol. 52(C).
    4. Yu, Chenyang & Tan, Yuanfang & Zhou, Yu & Zang, Chuanxiang & Tu, Chenglin, 2022. "Can functional urban specialization improve industrial energy efficiency? Empirical evidence from China," Energy, Elsevier, vol. 261(PA).
    5. Pan, Xianyou & Song, Malin & Wang, Yuqing & Shen, Zhiyang & Song, Jinbo & Xie, Pinjie & Pan, Xiongfeng, 2022. "Liability accounting of natural resource assets from the perspective of input Slack—An analysis based on the energy resource in 282 prefecture-level cities in China," Resources Policy, Elsevier, vol. 78(C).
    6. Mushtaq, Zulqarnain & Wei, Wei & Jamil, Ihsan & Sharif, Maimoona & Chandio, Abbas Ali & Ahmad, Fayyaz, 2022. "Evaluating the factors of coal consumption inefficiency in energy intensive industries of China: An epsilon-based measure model," Resources Policy, Elsevier, vol. 78(C).
    7. Decai Tang & Zhangming Shan & Junxia He & Ziqian Zhao, 2022. "How Do Environmental Regulations and Outward Foreign Direct Investment Impact the Green Total Factor Productivity in China? A Mediating Effect Test Based on Provincial Panel Data," IJERPH, MDPI, vol. 19(23), pages 1-32, November.
    8. Zhang, Hui & Zhou, Peng & Sun, Xiumei & Ni, Guanqun, 2024. "Disparities in energy efficiency and its determinants in Chinese cities: From the perspective of heterogeneity," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    2. Chang, Ming-Chung, 2020. "An application of total-factor energy efficiency under the metafrontier framework," Energy Policy, Elsevier, vol. 142(C).
    3. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    4. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    5. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    6. Ren, Siyu & Hao, Yu & Wu, Haitao, 2022. "The role of outward foreign direct investment (OFDI) on green total factor energy efficiency: Does institutional quality matters? Evidence from China," Resources Policy, Elsevier, vol. 76(C).
    7. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    8. Ze Tian & Fang-Rong Ren & Qin-Wen Xiao & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Cross-Regional Comparative Study on Carbon Emission Efficiency of China’s Yangtze River Economic Belt Based on the Meta-Frontier," IJERPH, MDPI, vol. 16(4), pages 1-19, February.
    9. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    10. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    11. Wen-Min Lu & Qian Long Kweh & Kai-Chu Yang, 2022. "Multiplicative efficiency aggregation to evaluate Taiwanese local auditing institutions performance," Annals of Operations Research, Springer, vol. 315(2), pages 1243-1262, August.
    12. Yi Qu & Xiao Lyu & Wenlong Peng & Zongfei Xin, 2021. "How to Evaluate the Green Utilization Efficiency of Cultivated Land in a Farming Household? A Case Study of Shandong Province, China," Land, MDPI, vol. 10(8), pages 1-18, July.
    13. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "The Impact of Economic Growth and Air Pollution on Public Health in 31 Chinese Cities," IJERPH, MDPI, vol. 16(3), pages 1-26, January.
    14. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    15. Ren, Fang-rong & Tian, Ze & Liu, Jingjing & Shen, Yu-ting, 2020. "Analysis of CO2 emission reduction contribution and efficiency of China’s solar photovoltaic industry: Based on Input-output perspective," Energy, Elsevier, vol. 199(C).
    16. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    17. Lei, Ming & Yin, Zihan & Yu, Xiaowen & Deng, Shijie, 2017. "Carbon-weighted economic development performance and driving force analysis: Evidence from China," Energy Policy, Elsevier, vol. 111(C), pages 179-192.
    18. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    19. Magdalena Ziolo & Sandra Jednak & Gordana Savić & Dragana Kragulj, 2020. "Link between Energy Efficiency and Sustainable Economic and Financial Development in OECD Countries," Energies, MDPI, vol. 13(22), pages 1-28, November.
    20. Mushtaq, Zulqarnain & Wei, Wei & Jamil, Ihsan & Sharif, Maimoona & Chandio, Abbas Ali & Ahmad, Fayyaz, 2022. "Evaluating the factors of coal consumption inefficiency in energy intensive industries of China: An epsilon-based measure model," Resources Policy, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s036054422102541x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.