Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121803
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bai, Tao & Yan, Gang & Yu, Jianlin, 2018. "Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer," Energy, Elsevier, vol. 157(C), pages 647-657.
- Moreno-Rodríguez, A. & González-Gil, A. & Izquierdo, M. & Garcia-Hernando, N., 2012. "Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications," Energy, Elsevier, vol. 45(1), pages 704-715.
- Farshi, L. Garousi & Khalili, S., 2019. "Thermoeconomic analysis of a new ejector boosted hybrid heat pump (EBHP) and comparison with three conventional types of heat pumps," Energy, Elsevier, vol. 170(C), pages 619-635.
- Wang, Q. & Li, D.H. & Wang, J.P. & Sun, T.F. & Han, X.H. & Chen, G.M., 2013. "Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants," Applied Energy, Elsevier, vol. 112(C), pages 949-955.
- Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
- Lee, Jisung & Baek, Seungwhan & Jeong, Sangkwon, 2018. "Investigation of the ejector application in the cryogenic Joule-Thomson refrigeration system," Energy, Elsevier, vol. 165(PB), pages 269-280.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Shuilong & Bai, Tao & Wei, Yuan & Yu, Jianlin, 2023. "Performance analysis of a modified ejector-enhanced auto-cascade refrigeration cycle," Energy, Elsevier, vol. 265(C).
- Feng, Chunyu & Guo, Cong & Chen, Junbin & Tan, Sicong & Jiang, Yuyan, 2024. "Thermodynamic analysis of a dual-pressure evaporation high-temperature heat pump with low GWP zeotropic mixtures for steam generation," Energy, Elsevier, vol. 294(C).
- Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2022. "Study on the performance of an energy-efficient three-stage auto-cascade refrigeration system enhanced with a pressure regulator," Energy, Elsevier, vol. 258(C).
- Feng, Xu & Wu, Yuting & Du, Yanjun & Qi, Di, 2024. "Optimization and performance improvement of ultra-low temperature cascade refrigeration system based on the isentropic efficiency curve of single-screw compressor," Energy, Elsevier, vol. 298(C).
- Li, Yinlong & Liu, Guoqiang & Chen, Qi & Yan, Gang, 2023. "Progress of auto-cascade refrigeration systems performance improvement: Composition separation, shift and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Zhenzhen Liu & Jingde Jiang & Zilong Wang & Hua Zhang, 2023. "Thermodynamic Analysis of an Innovative Cold Energy Storage System for Auto-Cascade Refrigeration Applications," Energies, MDPI, vol. 16(5), pages 1-17, February.
- Tan, Yingying & Li, Xiuzhen & Wang, Lin & Huang, Lisheng & Xiao, Yi & Wang, Zhanwei & Li, Shaoqiang, 2023. "Thermodynamic performance of the fractionated auto-cascade refrigeration cycle coupled with two-phase ejector using R1150/R600a at −80 °C temperature level," Energy, Elsevier, vol. 281(C).
- Joon-Hyuk Lee & Hye-In Jung & Su-Been Lee & Chang-Hyo Son, 2024. "Enhancing Semiconductor Chiller Performance: Investigating the Performance Characteristics of Ultra-Low-Temperature Chillers Applying a Liquid Receiver," Energies, MDPI, vol. 17(20), pages 1-16, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yinlong & Liu, Guoqiang & Chen, Qi & Yan, Gang, 2023. "Progress of auto-cascade refrigeration systems performance improvement: Composition separation, shift and regulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
- Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
- Kumar, Anil & Modi, Anish, 2022. "Thermodynamic analysis of novel ejector-assisted vapour absorption-resorption refrigeration systems," Energy, Elsevier, vol. 244(PB).
- Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2022. "Study on the performance of an energy-efficient three-stage auto-cascade refrigeration system enhanced with a pressure regulator," Energy, Elsevier, vol. 258(C).
- Gao, Yu & He, Guogeng & Cai, Dehua & Fan, Mingjing, 2020. "Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device," Energy, Elsevier, vol. 212(C).
- Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
- Qi Chen & Yinsong Li, 2022. "Experimental Investigation on Intermittent Operation Characteristics of Dual-Temperature Refrigeration System Using Hydrocarbon Mixture," Energies, MDPI, vol. 15(11), pages 1-19, May.
- Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
- Lee, Seung Joo & Shon, Byung Hoon & Jung, Chung Woo & Kang, Yong Tae, 2018. "A novel type solar assisted heat pump using a low GWP refrigerant (R-1233zd(E)) with the flexible solar collector," Energy, Elsevier, vol. 149(C), pages 386-396.
- Saeid, Omar & Hashem, Gamal & Etaig, Saleh & Belgasim, Basim & Sagade, Atul, 2024. "Performance assessment of ammonia base solar ejector cooling system emphasizing ejector geometries: A detailed CFD analysis," Energy, Elsevier, vol. 301(C).
- Rostamzadeh, Hadi & Nourani, Pejman, 2019. "Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator," Energy, Elsevier, vol. 172(C), pages 675-690.
- Choi, Jongmin & Kang, Byun & Cho, Honghyun, 2014. "Performance comparison between R22 and R744 solar-geothermal hybrid heat pumps according to heat source conditions," Renewable Energy, Elsevier, vol. 71(C), pages 414-424.
- Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
- Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
- Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
- Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
- Yiqiao Li & Hao Huang & Dingli Duan & Shengqiang Shen & Dan Zhou & Siyuan Liu, 2024. "Non-Condensation Turbulence Models with Different Near-Wall Treatments and Solvers Comparative Research for Three-Dimensional Steam Ejectors," Energies, MDPI, vol. 17(22), pages 1-21, November.
- Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
More about this item
Keywords
Thermodynamic analysis; Exergy analysis; Auto-cascade refrigeration cycle; Ultra-low temperature freezer; Ejector;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s036054422102051x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.