IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019538.html
   My bibliography  Save this article

Design optimization of trio concept combustor geometry for low-grade biomass producer gas combustion

Author

Listed:
  • Zhien, Chai Yik
  • Al-attab, Khaled Ali

Abstract

Biomass as carbon-neutral fuel is a promising alternative to mitigate global warming problems. Biomass conversion into producer gas (PG) through air gasification allows the co-firing of PG burners with fossil fuel burners in boilers for large scale power generation. However, PG is highly diluted with nitrogen which reduces the heating value resulting in significantly higher PG flow, eliminating the possibility of using conventional compact gas burner designs. To burn the low-grade PG, special design for the combustor is required. Novel combustor design which combined three theories of swirl vane, cyclonic and staged combustion to facilitate PG combustion in compact geometry was elaborately investigated. Flow hydrodynamics and combustion characteristics of low-grade PG were studied using ANSYS-FLUENT simulation software. Design of Experiments (DOE) method was applied to optimize the design of the combustor geometry. The arrangement of simulations was designed based on the instruction of DOE. The optimum geometry design of combustor was 500 mm combustor length, 150 mm combustor diameter, 60° swirl vane angle and 0.4 secondary inlets position to total combustor length ratio. The combustor achieved optimum performance of 1965 K outlet temperature, 18 ppm CO emissions and 33 ppm NOx emissions at slight lean condition with equivalence ratio of 0.9.

Suggested Citation

  • Zhien, Chai Yik & Al-attab, Khaled Ali, 2022. "Design optimization of trio concept combustor geometry for low-grade biomass producer gas combustion," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019538
    DOI: 10.1016/j.energy.2021.121705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    2. Ilbas, Mustafa & Karyeyen, Serhat, 2017. "Turbulent diffusion flames of a low-calorific value syngas under varying turbulator angles," Energy, Elsevier, vol. 138(C), pages 383-393.
    3. Al-attab, K.A. & Zainal, Z.A., 2011. "Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion," Applied Energy, Elsevier, vol. 88(4), pages 1084-1095, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deore, Sujeetkumar P. & Gadkari, Prabodh & Mahajani, Sanjay M. & Kumar, Sandeep & Kumar, Sudarshan, 2023. "Development of a new premixed burner for biomass gasifier generated low calorific value producer gas for industrial applications," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renzo Seminario-Córdova, 2023. "Latin America towards Sustainability through Renewable Energies: A Systematic Review," Energies, MDPI, vol. 16(21), pages 1-22, November.
    2. Khan, Yasir & Hassan, Taimoor & Guiqin, Huang & Nabi, Ghulam, 2023. "Analyzing the impact of natural resources and rule of law on sustainable environment: A proposed policy framework for BRICS economies," Resources Policy, Elsevier, vol. 86(PA).
    3. Peterson K. Ozili & Paul Terhemba Iorember, 2024. "Financial stability and sustainable development," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2620-2646, July.
    4. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    5. Lin, Boqiang & Xu, Chongchong, 2024. "Reaping green dividend: The effect of China's urban new energy transition strategy on green economic performance," Energy, Elsevier, vol. 286(C).
    6. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Does green finance promote renewable energy? Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    7. Li, Yan-Qin & Cao, Hai-Liang & Zhou, Huai-Chun & Zhou, Jun-Jie & Liao, Xiao-Yan, 2017. "Research on dynamics of a laminar diffusion flame with bulk flow forcing," Energy, Elsevier, vol. 141(C), pages 1300-1312.
    8. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    9. Trinh, Hai Hong & Sharma, Gagan Deep & Tiwari, Aviral Kumar & Vo, Diem Thi Hong, 2022. "Examining the heterogeneity of financial development in the energy-environment nexus in the era of climate change: Novel evidence around the world," Energy Economics, Elsevier, vol. 116(C).
    10. Aniqa Arslan & Arslan Qayyum & Mosab I. Tabash & Kiran Nair & Muhammad AsadUllah & Linda Nalini Daniel, 2023. "The Impact of Economic Complexity, Usage of Energy, Tourism, and Economic Growth on Carbon Emissions: Empirical Evidence of 102 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 315-324, September.
    11. Wu, Zihao & Gao, Jun & Xu, Hui & Shi, Guanqun & Zaidan, Amal Mousa & Ageli, Mohammed Moosa, 2023. "Visualizing symmetric and asymmetric settings in MMQR for natural resources extraction and economic performance: A COVID-19 perspective," Resources Policy, Elsevier, vol. 85(PB).
    12. Zhongye Sun & Xin Zhang & Yifei Gao, 2023. "The Impact of Financial Development on Renewable Energy Consumption: A Multidimensional Analysis Based on Global Panel Data," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    13. Nashwa Mostafa Ali Mohamed & Karima Mohamed Magdy Kamal & Jawaher Binsuwadan, 2024. "The Adoption of Renewable Energy Technologies by Oil-Producing Countries: An Inevitable Outcome at a Time of Global Challenges and Demand for Sustainable Development," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
    14. Morais, F.J.F. & Carrelhas, A.A.D. & Gato, L.M.C., 2023. "Biplane-rotor Wells turbine: The influence of solidity, presence of guide vanes and comparison with other configurations," Energy, Elsevier, vol. 276(C).
    15. Fotio, Hervé Kaffo & Poumie, Boker & Baida, Louise Angèle & Nguena, Christian Lambert & Adams, Samuel, 2022. "A new look at the growth-renewable energy nexus: Evidence from a sectoral analysis in Sub-Saharan Africa," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 61-71.
    16. Peterson K. Ozili, 2024. "Does banking sector support for achieving the sustainable development goals affect bank loan loss provisions? International evidence," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-39, April.
    17. Filimonova Irina Viktorovna & Nemov Vasily Yurievich & Provornaya Irina Viktorovna & Ozhogova Lyubov Mikhailovna, 2021. "Impact of Renewable Energy Sources Consumption on Economic Growth in Europe and Asia-Pacific Region," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 270-278.
    18. Kuang, Hewu & Liang, Yiyan & Zhao, Wenjia & Cai, Jiahong, 2023. "Impact of natural resources and technology on economic development and sustainable environment – Analysis of resources-energy-growth-environment linkages in BRICS," Resources Policy, Elsevier, vol. 85(PB).
    19. Škare, Marinko & Porada-Rochoń, Małgorzata, 2023. "Are we making progress on decarbonization? A panel heterogeneous study of the long-run relationship in selected economies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    20. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.