IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019447.html
   My bibliography  Save this article

Analysis on the waste heat recovery in a light duty vehicle

Author

Listed:
  • Galloni, E.

Abstract

Waste heat recovery through organic Rankine cycles can improve the efficiency of automotive engines. However, the integration on board vehicle of a new auxiliary system must be evaluated in all its aspects.

Suggested Citation

  • Galloni, E., 2022. "Analysis on the waste heat recovery in a light duty vehicle," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019447
    DOI: 10.1016/j.energy.2021.121696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jingye & Gao, Lei & Ye, Zhenhong & Hwang, Yunho & Chen, Jiangping, 2021. "Binary-objective optimization of latest low-GWP alternatives to R245fa for organic Rankine cycle application," Energy, Elsevier, vol. 217(C).
    2. Liu, Peng & Shu, Gequn & Tian, Hua, 2019. "How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery," Energy, Elsevier, vol. 174(C), pages 543-552.
    3. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    4. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    5. Narasimhan, Arun Kumar & Wickramaratne, Chatura & Kamal, Rajeev & Goswami, D. Yogi & Singh, Punit, 2019. "Mapping scroll expander performance for organic working fluids using dimensionless parameters in Ns-Ds diagram," Energy, Elsevier, vol. 182(C), pages 739-752.
    6. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Deng, Shuai, 2018. "A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 95-110.
    7. Galloni, E. & Fontana, G. & Staccone, S., 2015. "Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid," Energy, Elsevier, vol. 90(P1), pages 768-775.
    8. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    9. Galloni, E. & Scala, F. & Fontana, G., 2019. "Influence of fuel bio-alcohol content on the performance of a turbo-charged, PFI, spark-ignition engine," Energy, Elsevier, vol. 170(C), pages 85-92.
    10. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Jinwen & Tian, Hua & Wang, Xuan & Wang, Rui & Shu, Gequn & Wang, Mingtao, 2021. "A calibrated organic Rankine cycle dynamic model applying to subcritical system and transcritical system," Energy, Elsevier, vol. 237(C).
    2. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    3. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    4. Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine," Energies, MDPI, vol. 12(21), pages 1-21, October.
    5. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    6. Feng, Yong-qiang & Xu, Jing-wei & He, Zhi-xia & Hung, Tzu-Chen & Shao, Meng & Zhang, Fei-yang, 2022. "Numerical simulation and optimal design of scroll expander applied in a small-scale organic rankine cycle," Energy, Elsevier, vol. 260(C).
    7. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2017. "Dynamic modelling and experimental validation of scroll expander for small scale power generation system," Applied Energy, Elsevier, vol. 186(P3), pages 262-281.
    8. Wang, Zhiqi & Zhao, Yabin & Xia, Xiaoxia & Pan, Huihui & Zhang, Sifeng & Liu, Zhipeng, 2023. "Experimental evaluation of organic Rankine cycle using zeotropic mixture under different operation conditions," Energy, Elsevier, vol. 264(C).
    9. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Zhang, Tao & Ma, Junhua & Zhou, Yanglin & Wang, Yongzhen & Chen, Qifang & Li, Xiaoping & Liu, Liuchen, 2021. "Thermo-economic analysis and optimization of ICE-ORC systems based on a splitter regulation," Energy, Elsevier, vol. 226(C).
    11. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    12. Eyerer, Sebastian & Dawo, Fabian & Schifflechner, Christopher & Niederdränk, Anne & Spliethoff, Hartmut & Wieland, Christoph, 2022. "Experimental evaluation of an ORC-CHP architecture based on regenerative preheating for geothermal applications," Applied Energy, Elsevier, vol. 315(C).
    13. Syamimi Saadon & Nur Athirah Mohd Nasir, 2020. "Performance and Sustainability Analysis of an Organic Rankine Cycle System in Subcritical and Supercritical Conditions for Waste Heat Recovery," Energies, MDPI, vol. 13(12), pages 1-24, June.
    14. Li, Yung-Ming & Hung, Tzu-Chen & Wu, Chia-Jung & Su, Ting-Ying & Xi, Huan & Wang, Chi-Chuan, 2021. "Experimental investigation of 3-kW organic Rankine cycle (ORC) system subject to heat source conditions: A new appraisal for assessment," Energy, Elsevier, vol. 217(C).
    15. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    16. Nenad Mustapić & Vladislav Brkić & Željko Duić & Toni Kralj, 2022. "Thermodynamic Optimization of Advanced Organic Rankine Cycle Configurations for Geothermal Energy Applications," Energies, MDPI, vol. 15(19), pages 1-36, September.
    17. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    18. Tian, Ran & Xu, Yunting & Shi, Lin & Song, Panpan & Wei, Mingshan, 2020. "Mixed convection heat transfer of supercritical pressure R1234yf in horizontal flow: Comparison study as alternative to R134a in organic Rankine cycles," Energy, Elsevier, vol. 205(C).
    19. Kosmadakis, George & Landelle, Arnaud & Lazova, Marija & Manolakos, Dimitris & Kaya, Alihan & Huisseune, Henk & Karavas, Christos-Spyridon & Tauveron, Nicolas & Revellin, Remi & Haberschill, Philippe , 2016. "Experimental testing of a low-temperature organic Rankine cycle (ORC) engine coupled with concentrating PV/thermal collectors: Laboratory and field tests," Energy, Elsevier, vol. 117(P1), pages 222-236.
    20. Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.