IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019289.html
   My bibliography  Save this article

Formulation of new screen printable PANI and PANI/Graphite based inks: Printing and characterization of flexible thermoelectric generators

Author

Listed:
  • Nayak, Ramakrishna
  • Shetty, Prakasha
  • M, Selvakumar
  • Rao, Ashok
  • Rao, K.Mohan

Abstract

The dearth of information about the fabrication of flexible polyaniline and graphite-based microporous and low-cost thermoelectric generators using screen printing for low-temperature applications has motivated us to undertake this research work. Polyaniline and graphite composite inks were formulated using cellulose acetate as resin and diacetone alcohol as the solvent. In this work, we have studied the influence of ink ingredients on the thermoelectric properties of composite inks. Diacetone alcohol improved the electrical conductivity of polyaniline by 7.9 times. The carrier concentrations and carrier mobility of composite ink were enhanced by 2.8 times. Simultaneously, cellulose acetate increased resistivity and carrier mobility of polyaniline by 13 and 44 times, respectively. Graphite improved the crystallinity but reduced carrier mobility, carrier concentration, and bandgap of the composite inks. Screen-printed porous ink film structure reduced the thermal conductivity of PANI ink by 11 times at 333 K. The maximum Seebeck coefficient and power output exhibited by the fabricated thermoelectric generator were 244.34 μV/K and 4.31 nW, respectively at 77 K. Present work explored fabrication and characterization of low cost, flexible polyaniline and graphite composite ink-based thermoelectric generator with improved Seebeck coefficient and power output for low-level heat energy conversion.

Suggested Citation

  • Nayak, Ramakrishna & Shetty, Prakasha & M, Selvakumar & Rao, Ashok & Rao, K.Mohan, 2022. "Formulation of new screen printable PANI and PANI/Graphite based inks: Printing and characterization of flexible thermoelectric generators," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019289
    DOI: 10.1016/j.energy.2021.121680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Zhisong & Zhang, Huihui & Mao, Cuiping & Li, Chang Ming, 2016. "Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body," Applied Energy, Elsevier, vol. 164(C), pages 57-63.
    2. Sarkar, Kamanashis & Debnath, Ajit & Deb, Krishna & Bera, Arun & Saha, Biswajit, 2019. "Effect of NiO incorporation in charge transport of polyaniline: Improved polymer based thermoelectric generator," Energy, Elsevier, vol. 177(C), pages 203-210.
    3. We, Ju Hyung & Kim, Sun Jin & Cho, Byung Jin, 2014. "Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator," Energy, Elsevier, vol. 73(C), pages 506-512.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    3. Zhou, Maoying & Al-Furjan, Mohannad Saleh Hammadi & Zou, Jun & Liu, Weiting, 2018. "A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3582-3609.
    4. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    5. Huaibin Gao & Runchen Wang & Xiaojiang Liu & Yu Ma & Chuanwei Zhang, 2024. "Numerical Investigation of a Novel Heat Exchanger in a High-Temperature Thermoelectric Generator," Energies, MDPI, vol. 17(5), pages 1-18, February.
    6. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    7. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    8. Wei, Haoxiang & Zhang, Jian & Han, Yang & Xu, Dongyan, 2022. "Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling," Applied Energy, Elsevier, vol. 326(C).
    9. Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2017. "Wearable thermoelectric generator for harvesting heat on the curved human wrist," Applied Energy, Elsevier, vol. 205(C), pages 710-719.
    10. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    11. Hwang, Wonseop & Kim, Kyung-Bum & Cho, Jae Yong & Yang, Chan Ho & Kim, Jung Hun & Song, Gyeong Ju & Song, Yewon & Jeon, Deok Hwan & Ahn, Jung Hwan & Do Hong, Seong & Kim, Jihoon & Lee, Tae Hee & Choi,, 2019. "Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway," Applied Energy, Elsevier, vol. 243(C), pages 313-320.
    12. Jang, Eunhwa & Banerjee, Priyanshu & Huang, Jiyuan & Madan, Deepa, 2021. "High performance scalable and cost-effective thermoelectric devices fabricated using energy efficient methods and naturally occuring materials," Applied Energy, Elsevier, vol. 294(C).
    13. Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
    14. Siddique, Abu Raihan Mohammad & Rabari, Ronil & Mahmud, Shohel & Heyst, Bill Van, 2016. "Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique," Energy, Elsevier, vol. 115(P1), pages 1081-1091.
    15. Mai, Van-Phung & Lee, Tsung-Yu & Yang, Ruey-Jen, 2022. "Enhanced-performance droplet-triboelectric nanogenerators with composite polymer films and electrowetting-assisted charge injection," Energy, Elsevier, vol. 260(C).
    16. Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
    17. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    18. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    19. Lu, Zhisong & Zhang, Huihui & Mao, Cuiping & Li, Chang Ming, 2016. "Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body," Applied Energy, Elsevier, vol. 164(C), pages 57-63.
    20. Francioso, Luca & De Pascali, Chiara & Siciliano, Pietro, 2015. "Experimental assessment of thermoelectric generator package properties: Simulated results validation and real gradient capabilities," Energy, Elsevier, vol. 86(C), pages 300-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.