IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221016200.html
   My bibliography  Save this article

Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor

Author

Listed:
  • Nozari, Mohammadreza
  • Tabejamaat, Sadegh
  • Sadeghizade, Hasan
  • Aghayari, Majid

Abstract

Experimental investigations of the effects of a new gaseous fuel injector on the performance of a micro gas turbine combustor have been conducted. The new injector which is called swirl injector exerts a swirl-like motion on the fuel flow to increase air-fuel mixing in the combustor. The results, including temperature distribution in the secondary zone of the combustor, NOx, CO, and CO2 emissions, thermal power, and pattern factor are compared with the conical injector configuration. The results show that the temperature distribution is more uniform, both at the secondary zone and outlet section of the combustor in the swirl injector configuration, and the pattern factor of the combustor is reduced by a factor of two. Moreover, the mean outlet temperature of the combustor is higher in the swirl injector configuration which leads to increased thermal power and combustion efficiency up to 12%. Analysis of the emission of the combustor reveals that the CO emission can reduce to half in the swirl configuration at high fuel flow rates. NO emission, however, is two times higher in the new configuration at low fuel flow rates, but at higher flow rates the NO emission is equal to the conical injector configuration.

Suggested Citation

  • Nozari, Mohammadreza & Tabejamaat, Sadegh & Sadeghizade, Hasan & Aghayari, Majid, 2021. "Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016200
    DOI: 10.1016/j.energy.2021.121372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadatakhavi, SeyedMohammadReza & Tabejamaat, Sadegh & EiddiAttarZade, Masoud & Kankashvar, Benyamin & Nozari, MohammadReza, 2021. "Numerical and experimental study of the effects of fuel injection and equivalence ratio in a can micro-combustor at atmospheric condition," Energy, Elsevier, vol. 225(C).
    2. Topal, Ahmet & Turan, Onder, 2019. "One dimensional liner temperature prediction in a tubular combustor," Energy, Elsevier, vol. 171(C), pages 1100-1106.
    3. Kim, Kyung Min & Jeon, Yun Heung & Yun, Namgeon & Lee, Dong Hyun & Cho, Hyung Hee, 2011. "Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner," Energy, Elsevier, vol. 36(2), pages 942-949.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bollas, Konstantinos & Banihabib, Reyhaneh & Assadi, Mohsen & Kalfas, Anestis, 2024. "Optimal operating scenario and performance comparison of biomass-fueled externally-fired microturbine," Energy, Elsevier, vol. 296(C).
    2. Zhang, Yueliang & Li, Jiangheng & Xie, Jin, 2022. "Effects of lateral cooling hole configuration on a swirl-stabilized combustor," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanmaniraja Radhakrishnan & Jun Su Park, 2021. "Thermal Analysis and Creep Lifetime Prediction Based on the Effectiveness of Thermal Barrier Coating on a Gas Turbine Combustor Liner Using Coupled CFD and FEM Simulation," Energies, MDPI, vol. 14(13), pages 1-21, June.
    2. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    3. Peng Guan & Yan-Ting Ai & Cheng-Wei Fei, 2019. "An Enhanced Flow-Thermo-Structural Modeling and Validation for the Integrated Analysis of a Film Cooling Nozzle Guide Vane," Energies, MDPI, vol. 12(14), pages 1-20, July.
    4. Aygun, Hakan, 2024. "Effects of air to fuel ratio on parameters of combustor used for gas turbine engines: Applications of turbojet, turbofan, turboprop and turboshaft," Energy, Elsevier, vol. 305(C).
    5. Gurunadh Velidi & Chun Sang Yoo, 2023. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges," Energies, MDPI, vol. 16(9), pages 1-44, May.
    6. Kim, Kyung Min & Moon, Hokyu & Park, Jun Su & Cho, Hyung Hee, 2014. "Optimal design of impinging jets in an impingement/effusion cooling system," Energy, Elsevier, vol. 66(C), pages 839-848.
    7. Chung, Heeyoon & Sohn, Ho-Seong & Park, Jun Su & Kim, Kyung Min & Cho, Hyung Hee, 2017. "Thermo-structural analysis of cracks on gas turbine vane segment having multiple airfoils," Energy, Elsevier, vol. 118(C), pages 1275-1285.
    8. Park, Jun Su & Park, Sehjin & Kim, Kyung Min & Choi, Beom Seok & Cho, Hyung Hee, 2013. "Effect of the thermal insulation on generator and micro gas turbine system," Energy, Elsevier, vol. 59(C), pages 581-589.
    9. Zhang, Yueliang & Li, Jiangheng & Xie, Jin, 2022. "Effects of lateral cooling hole configuration on a swirl-stabilized combustor," Energy, Elsevier, vol. 259(C).
    10. Badur, Janusz & Ziółkowski, Paweł & Sławiński, Daniel & Kornet, Sebastian, 2015. "An approach for estimation of water wall degradation within pulverized-coal boilers," Energy, Elsevier, vol. 92(P1), pages 142-152.
    11. Topal, Ahmet & Turan, Onder, 2019. "One dimensional liner temperature prediction in a tubular combustor," Energy, Elsevier, vol. 171(C), pages 1100-1106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.