IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221013268.html
   My bibliography  Save this article

The characteristics of methane/oxygen premixed flame dynamics in a meso-scale reactor under fuel rich condition

Author

Listed:
  • Wang, Yu
  • Pan, Jianfeng
  • Wang, Junfeng
  • Lu, Qingbo
  • Liu, Yangxian
  • Quaye, Evans K.

Abstract

The high surface-to-volume ratio of a micro combustor causes the flame motion to vary from that of a large-scale combustor. The effects of the length and height of the combustor on the flame behaviors are studied to revel the flame pattern. Five flame regimes are observed, namely diffusion flame, steady flame, partly RERI flame, fully RERI flame and flame flashback and extinction. The equivalence ratio range of each flame regime in several combustors is measured. The flame position of the steady flame and the corresponding wall temperature as well as the frequency and propagating distance of the RERI flame are investigated. The results show that the change of combustor length has a significant effect on the extinction area and the increase and decrease of the height of the combustor channel lead to a shift towards fuel rich side and fuel lean side respectively. Longer combustor broadens the low equivalence ratio limit of the steady flame. Higher combustor channel increases the effect of inlet Reynolds Number on the high equivalence limit of steady flame. Combustor length has little effects on the RERI flame, whereas higher channel height of combustor increases the propagating distance of the RERI flame but decreases the frequency.

Suggested Citation

  • Wang, Yu & Pan, Jianfeng & Wang, Junfeng & Lu, Qingbo & Liu, Yangxian & Quaye, Evans K., 2021. "The characteristics of methane/oxygen premixed flame dynamics in a meso-scale reactor under fuel rich condition," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013268
    DOI: 10.1016/j.energy.2021.121078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alipoor, Alireza & Mazaheri, Kiumars, 2014. "Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 73(C), pages 367-379.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    2. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2016. "Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor," Energy, Elsevier, vol. 113(C), pages 193-203.
    3. Alipoor, Alireza & Mazaheri, Kiumars, 2016. "Combustion characteristics and flame bifurcation in repetitive extinction-ignition dynamics for premixed hydrogen-air combustion in a heated micro channel," Energy, Elsevier, vol. 109(C), pages 650-663.
    4. Yang, Xiao & Yang, Wenming & Dong, Shikui & Tan, Heping, 2020. "Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor," Energy, Elsevier, vol. 209(C).
    5. Fan, Aiwu & Zhang, He & Wan, Jianlong, 2017. "Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body," Energy, Elsevier, vol. 123(C), pages 252-259.
    6. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    7. Wan, Jianlong & Zhao, Haibo, 2018. "Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 157(C), pages 448-459.
    8. Alipoor, Alireza & Mazaheri, Kiumars, 2020. "Maps of flame dynamics for premixed lean hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 194(C).
    9. Xiang, Ying & Yuan, Zili & Wang, Shixuan & Fan, Aiwu, 2019. "Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor," Energy, Elsevier, vol. 179(C), pages 315-322.
    10. Wan, Jianlong & Zhao, Haibo, 2017. "Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 139(C), pages 366-379.
    11. Wang, Shixuan & Li, Linhong & Xia, Yongfang & Fan, Aiwu & Yao, Hong, 2018. "Effect of a catalytic segment on flame stability in a micro combustor with controlled wall temperature profile," Energy, Elsevier, vol. 165(PA), pages 522-531.
    12. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Faghani-Lamraski, Morteza, 2017. "Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors," Energy, Elsevier, vol. 121(C), pages 657-675.
    13. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2015. "Effect of pressure on the blow-off limits of premixed CH4/air flames in a mesoscale cavity-combustor," Energy, Elsevier, vol. 91(C), pages 102-109.
    14. Veeraragavan, Ananthanarayanan, 2015. "On flame propagation in narrow channels with enhanced wall thermal conduction," Energy, Elsevier, vol. 93(P1), pages 631-640.
    15. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.