IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221007143.html
   My bibliography  Save this article

Collaborative optimal operation of transmission system with integrated active distribution system and district heating system based on semi-definite programming relaxation method

Author

Listed:
  • Chen, Houhe
  • Lin, Chuqiao
  • Fu, Linbo
  • Zhang, Rufeng

Abstract

The increasing installment of distributed generations (DGs) and the tight coupling between active distribution system (ADS) and district heating system (DHS) enhance the flexibility of electricity-heat integrated energy system (IES) to participate in the operation of power transmission system. The operation of transmission system will be affected by distribution company (DISCO). In this paper, a collaborative optimal operation model of transmission system is proposed considering the interaction with the district electricity-heat integrated energy systems based on a semi-definite programming relaxation method. The optimal operation problem of ADS is modeled based on AC optimal power flow (ACOPF) with second order cone (SOC) relaxation, and network constraints of DHS are considered. An iterative semi-definite programming relaxation method is utilized to ensure the solution accuracy. The effectiveness of the proposed model on improving the utilization rate of DGs and the economy is verified based on case studies.

Suggested Citation

  • Chen, Houhe & Lin, Chuqiao & Fu, Linbo & Zhang, Rufeng, 2021. "Collaborative optimal operation of transmission system with integrated active distribution system and district heating system based on semi-definite programming relaxation method," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007143
    DOI: 10.1016/j.energy.2021.120465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    2. Aste, Niccolò & Caputo, Paola & Del Pero, Claudio & Ferla, Giulio & Huerto-Cardenas, Harold Enrique & Leonforte, Fabrizio & Miglioli, Alessandro, 2020. "A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system," Energy, Elsevier, vol. 206(C).
    3. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
    4. Nguyen, Truong & Gustavsson, Leif, 2020. "Production of district heat, electricity and/or biomotor fuels in renewable-based energy systems," Energy, Elsevier, vol. 202(C).
    5. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khojasteh, Meysam & Faria, Pedro & Lezama, Fernando & Vale, Zita, 2023. "A hierarchy model to use local resources by DSO and TSO in the balancing market," Energy, Elsevier, vol. 267(C).
    2. Zhang, Tao & Mu, Yunfei & Dong, Lei & Jia, Hongjie & Pu, Tianjiao & Wang, Xinying, 2023. "Fully parallel decentralized load restoration in coupled transmission and distribution system with soft open points," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    3. Jiawei Wang & Aidong Zeng & Yaheng Wan, 2023. "Multi-Time-Scale Optimal Scheduling of Integrated Energy System Considering Transmission Delay and Heat Storage of Heating Network," Sustainability, MDPI, vol. 15(19), pages 1-26, September.
    4. Gou, Xing & Chen, Qun & Sun, Yong & Ma, Huan & Li, Bao-Ju, 2021. "Holistic analysis and optimization of distributed energy system considering different transport characteristics of multi-energy and component efficiency variation," Energy, Elsevier, vol. 228(C).
    5. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Aidong Zeng & Jiawei Wang & Yaheng Wan, 2023. "Coordinated Optimal Dispatch of Electricity and Heat Integrated Energy Systems Based on Fictitious Node Method," Energies, MDPI, vol. 16(18), pages 1-24, September.
    7. Alba Arias & Iñigo Leon & Xabat Oregi & Cristina Marieta, 2021. "Environmental Assessment of University Campuses: The Case of the University of Navarra in Pamplona (Spain)," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    8. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    9. Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
    10. Jingjing Zhai & Xiaobei Wu & Zihao Li & Shaojie Zhu & Bo Yang & Haoming Liu, 2021. "Day-Ahead and Intra-Day Collaborative Optimized Operation among Multiple Energy Stations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    11. Chun Wei & Xiangzhi Xu & Youbing Zhang & Xiangshan Li, 2019. "A Survey on Optimal Control and Operation of Integrated Energy Systems," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    12. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    13. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    14. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    15. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    16. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    17. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    18. Zhong, Shengyuan & Wang, Xiaoyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Wang, Yongzhen & Deng, Shuai & Zhu, Jiebei, 2021. "Deep reinforcement learning framework for dynamic pricing demand response of regenerative electric heating," Applied Energy, Elsevier, vol. 288(C).
    19. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    20. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.