IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipbs0360544220322283.html
   My bibliography  Save this article

A two-stage multi-objective optimal scheduling in the integrated energy system with We-Energy modeling

Author

Listed:
  • Zhang, Ning
  • Sun, Qiuye
  • Yang, Lingxiao

Abstract

This paper proposes a two-stage multi-objective optimal scheduling strategy (TMOS) based on the innovative mathematical model of We-Energy (WE) in the integrated energy system (IES). WE, as a new-style energy unit with full duplex and multi-energy carrier coupling interaction, is necessary to provide a mathematical model to solve the schema translation problem for the scheduling of the WE. Therefore, a WE mathematical model based on Hadamard Product is presented which can clearly show the dynamic properties of internal elements and the full duplex characteristic of the WE. Namely, the optimization model for the WE can be easily and compactly established by utilizing the proposed method. Furthermore, in order to reduce the unfavorable effects of the renewable energy (RE) uncertainty and realize the energy management of the WE, a TMOS on account of the proposed mathematical model is presented to dispatch the WE operation. The comprehensive impact of multiple significant operation indicators is considered in TMOS which conventional methods ignored. The economic benefit and customer satisfaction can be improved by the first-stage of TMOS according to the energy price and the day-ahead forecasting of RE generation. Meanwhile, the TMOS can reduce the impact of the RE prediction error to realize the real-time power balancing and ensure the security operation by regulating the components of the WE in the second-stage dispatch. The proposed strategy is demonstrated by two example cases, where the performance of the TMOS is observed. The consequences of the cases are analyzed in view of the energy exchanges with networks and the outputs of elements in the presented condition. Moreover, the contrast of the proposed optimal scheduling with another traditional optimal method is also discussed in the paper. As the results shown in the cases, the TMOS based on the innovative WE model balances the forecast error and has more benefits in networks influence, customer satisfaction and residual capacity indicator.

Suggested Citation

  • Zhang, Ning & Sun, Qiuye & Yang, Lingxiao, 2021. "A two-stage multi-objective optimal scheduling in the integrated energy system with We-Energy modeling," Energy, Elsevier, vol. 215(PB).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322283
    DOI: 10.1016/j.energy.2020.119121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiawei & You, Shi & Zong, Yi & Cai, Hanmin & Træholt, Chresten & Dong, Zhao Yang, 2019. "Investigation of real-time flexibility of combined heat and power plants in district heating applications," Applied Energy, Elsevier, vol. 237(C), pages 196-209.
    2. Kamyab, Farhad & Bahrami, Shahab, 2016. "Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets," Energy, Elsevier, vol. 106(C), pages 343-355.
    3. Yang, Hongming & Xiong, Tonglin & Qiu, Jing & Qiu, Duo & Dong, Zhao Yang, 2016. "Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response," Applied Energy, Elsevier, vol. 167(C), pages 353-365.
    4. Yang, Yulong & Wu, Kai & Long, Hongyu & Gao, Jianchao & Yan, Xu & Kato, Takeyoshi & Suzuoki, Yasuo, 2014. "Integrated electricity and heating demand-side management for wind power integration in China," Energy, Elsevier, vol. 78(C), pages 235-246.
    5. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    6. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    7. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling," Energy, Elsevier, vol. 74(C), pages 109-118.
    8. Sheikhi, Aras & Bahrami, Shahab & Ranjbar, Ali Mohammad, 2015. "An autonomous demand response program for electricity and natural gas networks in smart energy hubs," Energy, Elsevier, vol. 89(C), pages 490-499.
    9. Chuanjia Han & Bo Yang & Tao Bao & Tao Yu & Xiaoshun Zhang, 2017. "Bacteria Foraging Reinforcement Learning for Risk-Based Economic Dispatch via Knowledge Transfer," Energies, MDPI, vol. 10(5), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    2. Yin, Linfei & Zhao, Lulin, 2021. "Rejectable deep differential dynamic programming for real-time integrated generation dispatch and control of micro-grids," Energy, Elsevier, vol. 225(C).
    3. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    4. Gejirifu De & Xinlei Wang & Xueqin Tian & Tong Xu & Zhongfu Tan, 2022. "A Collaborative Optimization Model for Integrated Energy System Considering Multi-Load Demand Response," Energies, MDPI, vol. 15(6), pages 1-26, March.
    5. Pan, Chenyun & Fan, Hongtao & Zhang, Ruixiang & Sun, Jie & Wang, Yu & Sun, Yaojie, 2023. "An improved multi-timescale coordinated control strategy for an integrated energy system with a hybrid energy storage system," Applied Energy, Elsevier, vol. 343(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    2. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Liao, Zitian & Liao, Xiaoqun & Khakichi, Aroos, 2024. "Optimum planning of energy hub with participation in electricity market and heat markets and application of integrated load response program with improved particle swarm algorithm," Energy, Elsevier, vol. 286(C).
    4. Amiri, S. & Honarvar, M. & sadegheih, A., 2018. "Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance," Energy, Elsevier, vol. 163(C), pages 1093-1114.
    5. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    6. Majidi, Majid & Nojavan, Sayyad & Zare, Kazem, 2017. "A cost-emission framework for hub energy system under demand response program," Energy, Elsevier, vol. 134(C), pages 157-166.
    7. Liu, Qian & Li, Wanjun & Zhao, Zhen & Jian, Gan, 2024. "Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks," Energy, Elsevier, vol. 288(C).
    8. Hassan Ranjbarzadeh & Seyed Masoud Moghaddas Tafreshi & Mohd Hasan Ali & Abbas Z. Kouzani & Suiyang Khoo, 2022. "A Probabilistic Model for Minimization of Solar Energy Operation Costs as Well as CO 2 Emissions in a Multi-Carrier Microgrid (MCMG)," Energies, MDPI, vol. 15(9), pages 1-24, April.
    9. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    10. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    11. Mohammad Hemmati & Mehdi Abapour & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Optimal Operation of Integrated Electrical and Natural Gas Networks with a Focus on Distributed Energy Hub Systems," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    12. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    14. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    15. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    16. Salehimaleh, Mohammad & Akbarimajd, Adel & Valipour, Khalil & Dejamkhooy, Abdolmajid, 2018. "Generalized modeling and optimal management of energy hub based electricity, heat and cooling demands," Energy, Elsevier, vol. 159(C), pages 669-685.
    17. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    18. Yang, Jie & Ma, Tieding & Ma, Kai & Yang, Bo & Guerrero, Josep M. & Liu, Zhixin, 2021. "Trading mechanism and pricing strategy of integrated energy systems based on credit rating and Bayesian game," Energy, Elsevier, vol. 232(C).
    19. Pavel Rušeljuk & Kertu Lepiksaar & Andres Siirde & Anna Volkova, 2021. "Economic Dispatch of CHP Units through District Heating Network’s Demand-Side Management," Energies, MDPI, vol. 14(15), pages 1-20, July.
    20. Shan Deng & Qinghua Wu & Zhaoxia Jing & Lilan Wu & Feng Wei & Xiaoxin Zhou, 2017. "Optimal Capacity Configuration for Energy Hubs Considering Part-Load Characteristics of Generation Units," Energies, MDPI, vol. 10(12), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.