IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220321447.html
   My bibliography  Save this article

Water as an adsorptive for adsorption cycles operating at a temperature below 0 °C

Author

Listed:
  • Girnik, I.S.
  • Aristov, Yu.I.

Abstract

From the thermodynamic point of view, water is the best working fluid for adsorptive heat conversion (AHC) cycles. Here we propose to use an aqueous salt solution instead of pure water for preventing its freezing in the evaporator/condenser at a temperature below 0 °C. The thermodynamic aspects of this approach are comprehensively investigated. The comparison with methanol and ammonia is made when possible. The effect of salt solution on the cycle boundary pressures and useful heat is studied for common (cooling and heat storage) and innovative (“Heat from Cold”, HeCol) AHC cycles. The experimental study on water sorption dynamics under the reduced vapour pressure over eutectic solutions of NaCl and CaCl2 shows a significant slowing of desorption (for the HeCol cycle) and adsorption (for the heat storage cycle) at long times. However, the specific power at a 70% conversion (0.3–0.6 kW/g) still remains promising for practical applications.

Suggested Citation

  • Girnik, I.S. & Aristov, Yu.I., 2020. "Water as an adsorptive for adsorption cycles operating at a temperature below 0 °C," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321447
    DOI: 10.1016/j.energy.2020.119037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordeeva, Larisa G. & Aristov, Yuriy I., 2011. "Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: Dynamic optimization," Energy, Elsevier, vol. 36(2), pages 1273-1279.
    2. Santori, G. & Frazzica, A. & Freni, A. & Galieni, M. & Bonaccorsi, L. & Polonara, F. & Restuccia, G., 2013. "Optimization and testing on an adsorption dishwasher," Energy, Elsevier, vol. 50(C), pages 170-176.
    3. Shkatulov, Alexandr & Gordeeva, Larisa G. & Girnik, Ilya S. & Huinink, Henk & Aristov, Yuri I., 2020. "Novel adsorption method for moisture and heat recuperation in ventilation: Composites “LiCl/matrix” tailored for cold climate," Energy, Elsevier, vol. 201(C).
    4. Xu, Z.Y. & Wang, R.Z., 2019. "Absorption seasonal thermal storage cycle with high energy storage density through multi-stage output," Energy, Elsevier, vol. 167(C), pages 1086-1096.
    5. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
    6. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    7. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aristov, Yu. I., 2022. "Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilya Girnik & Yuri Aristov, 2020. "An Aqueous CaCl 2 Solution in the Condenser/Evaporator Instead of Pure Water: Application for the New Adsorptive Cycle “Heat from Cold”," Energies, MDPI, vol. 13(11), pages 1-11, June.
    2. Frazzica, A. & Brancato, V. & Caprì, A. & Cannilla, C. & Gordeeva, L.G. & Aristov, Y.I., 2020. "Development of “salt in porous matrix” composites based on LiCl for sorption thermal energy storage," Energy, Elsevier, vol. 208(C).
    3. Tokarev, M.M. & Girnik, I.S. & Aristov, Yu.I., 2022. "Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle," Energy, Elsevier, vol. 238(PC).
    4. Girnik, I.S. & Grekova, A.D. & Li, T.X. & Wang, R.Z. & Dutta, P. & Srinivasa Murthy, S. & Aristov, Yu.I., 2020. "Composite “LiCl/MWCNT/PVA” for adsorption thermal battery: Dynamics of methanol sorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Aristov, Yu. I., 2022. "Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?," Energy, Elsevier, vol. 239(PB).
    6. Aristov, Yuri I., 2020. "Dynamics of adsorptive heat conversion systems: Review of basics and recent advances," Energy, Elsevier, vol. 205(C).
    7. Aristov, Yu.I., 2021. "Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues," Energy, Elsevier, vol. 236(C).
    8. Strelova, S.V. & Aristov, Yu. I. & Gordeeva, L.G., 2023. "Dynamics of water vapour sorption on composite LiCl/(silica gel): An innovative configuration of the adsorbent bed," Energy, Elsevier, vol. 283(C).
    9. Aristov, Yu.I. & Gordeeva, L.G., 2022. "Combining the psychrometric chart of humid air with water adsorption isosters: Analysis of the Ventireg process," Energy, Elsevier, vol. 239(PC).
    10. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    11. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo, 2011. "Influence of the management strategy and operating conditions on the performance of an adsorption chiller," Energy, Elsevier, vol. 36(9), pages 5532-5538.
    12. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    13. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    14. Wenxiong Xi & Mengyao Xu & Chaoyang Liu & Jian Liu, 2022. "Recent Developments of Heat Transfer Enhancement and Thermal Management Technology," Energies, MDPI, vol. 15(16), pages 1-3, August.
    15. Cranston, Jonathan & Askalany, Ahmed & Santori, Giulio, 2019. "Efficient drying in washer dryers by combining sorption and heat pumping," Energy, Elsevier, vol. 183(C), pages 683-692.
    16. Andreas Velte & Jörg Weise & Eric Laurenz & Joachim Baumeister & Gerrit Füldner, 2021. "Zeolite NaY-Copper Composites Produced by Sintering Processes for Adsorption Heat Transformation—Technology, Structure and Performance," Energies, MDPI, vol. 14(7), pages 1-24, April.
    17. Steven Metcalf & Ángeles Rivero-Pacho & Robert Critoph, 2021. "Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps," Energies, MDPI, vol. 14(11), pages 1-17, June.
    18. Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
    19. Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
    20. Aristov, Yuriy I. & Glaznev, Ivan S. & Girnik, Ilya S., 2012. "Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration," Energy, Elsevier, vol. 46(1), pages 484-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.