IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v20y1995i10p959-967.html
   My bibliography  Save this article

Thermodynamic optimization of convective heat transfer in a packed duct

Author

Listed:
  • Demi̇rel, Y.

Abstract

The first and second laws of thermodynamics have been utilized to optimize the convective heat transfer in a packed duct with constant wall temperatures. Introducing packing into the fluid-flow passage increases the wall-to-fluid heat transfer considerably and hence reduces entropy generation due to heat transfer across a finite temperature difference; at the same time, entropy generation due to fluid-flow friction increases. Minimization of the net entropy generation yields the criterion for system optimization. It is shown that the entropy-generation rate, a path-dependent property induced by enhancement of convective heat transfer in a packed duct, may be minimized through proper selection of operating conditions and design parameters of the system.

Suggested Citation

  • Demi̇rel, Y., 1995. "Thermodynamic optimization of convective heat transfer in a packed duct," Energy, Elsevier, vol. 20(10), pages 959-967.
  • Handle: RePEc:eee:energy:v:20:y:1995:i:10:p:959-967
    DOI: 10.1016/0360-5442(95)00064-N
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429500064N
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(95)00064-N?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    2. Chen, Qun & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2009. "Optimization principles for convective heat transfer," Energy, Elsevier, vol. 34(9), pages 1199-1206.
    3. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:20:y:1995:i:10:p:959-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.