IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313347.html
   My bibliography  Save this article

A novel economic analyzing method for CCHP systems based on energy cascade utilization

Author

Listed:
  • Teng, Jiaying
  • Wang, Wan
  • Mu, Xiaofei

Abstract

A novel economic analyzing method was proposed to evaluate the combined cooling, heating and power (CCHP) system based on energy cascade utilization and the current feed-in tariff policy in China. Natural gas consumption rates were chosen as the economic criteria to evaluate operation costs of cooling, heating and electricity of an office building in Changchun, Jilin of China. Based on the building’s energy consumption and current energy price structures, the following electric load (FEL) operation strategy was used to achieve a more profitable performance from the CCHP system. Because of the deficiency in economic performance, no excess electricity was generated or sold to the grid, even though selling electricity to the grid was allowed when certain restrictions were satisfied. Meanwhile, the power generation unit size was optimized according to the basic electric requirement of the building. Additionally, a water storage tank was used because it could improve the primary energy consumption ratio and the profitability of the CCHP system.

Suggested Citation

  • Teng, Jiaying & Wang, Wan & Mu, Xiaofei, 2020. "A novel economic analyzing method for CCHP systems based on energy cascade utilization," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313347
    DOI: 10.1016/j.energy.2020.118227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murugan, S. & Horák, Bohumil, 2016. "Tri and polygeneration systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1032-1051.
    2. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    3. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    4. Franco, Alessandro & Versace, Michele, 2017. "Optimum sizing and operational strategy of CHP plant for district heating based on the use of composite indicators," Energy, Elsevier, vol. 124(C), pages 258-271.
    5. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    6. Díaz, Guzmán & Moreno, Blanca, 2016. "Valuation under uncertain energy prices and load demands of micro-CHP plants supplemented by optimally switched thermal energy storage," Applied Energy, Elsevier, vol. 177(C), pages 553-569.
    7. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q. & Wang, R.Z., 2016. "Impacts of feed-in tariff policies on design and performance of CCHP system in different climate zones," Applied Energy, Elsevier, vol. 175(C), pages 168-179.
    8. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    9. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    10. Siler-Evans, Kyle & Morgan, M. Granger & Azevedo, Inês Lima, 2012. "Distributed cogeneration for commercial buildings: Can we make the economics work?," Energy Policy, Elsevier, vol. 42(C), pages 580-590.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    2. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    3. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    4. Yang, Yiping & Huang, Yulei & Jiang, Peixue & Zhu, Yinhai, 2020. "Multi-objective optimization of combined cooling, heating, and power systems with supercritical CO2 recompression Brayton cycle," Applied Energy, Elsevier, vol. 271(C).
    5. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    6. Zhao, Xinyu & Yang, Sheng & Liu, Zhanjun & Wang, Deqiang & Du, Zengzhi & Ren, Jingzheng, 2024. "Optimization and exergoeconomic analysis of a solar-powered ORC-VCR-CCHP system based on a ternary refrigerant selection model," Energy, Elsevier, vol. 290(C).
    7. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    8. Liting Zhang & Weijun Gao & Yongwen Yang & Fanyue Qian, 2020. "Impacts of Investment Cost, Energy Prices and Carbon Tax on Promoting the Combined Cooling, Heating and Power (CCHP) System of an Amusement Park Resort in Shanghai," Energies, MDPI, vol. 13(16), pages 1-22, August.
    9. Pina, Eduardo A. & Lozano, Miguel A. & Ramos, José C. & Serra, Luis M., 2020. "Tackling thermal integration in the synthesis of polygeneration systems for buildings," Applied Energy, Elsevier, vol. 269(C).
    10. Song, Zhihui & Liu, Tao & Lin, Qizhao, 2020. "Multi-objective optimization of a solar hybrid CCHP system based on different operation modes," Energy, Elsevier, vol. 206(C).
    11. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    12. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    13. Li, Nan & Zhao, Xunwen & Shi, Xunpeng & Pei, Zhenwei & Mu, Hailin & Taghizadeh-Hesary, Farhad, 2021. "Integrated energy systems with CCHP and hydrogen supply: A new outlet for curtailed wind power," Applied Energy, Elsevier, vol. 303(C).
    14. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    15. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    16. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    17. Jing, Rui & Wang, Meng & Brandon, Nigel & Zhao, Yingru, 2017. "Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China," Energy, Elsevier, vol. 141(C), pages 273-289.
    18. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    19. Zhao, Xin & Zheng, Wenyu & Hou, Zhihua & Chen, Heng & Xu, Gang & Liu, Wenyi & Chen, Honggang, 2022. "Economic dispatch of multi-energy system considering seasonal variation based on hybrid operation strategy," Energy, Elsevier, vol. 238(PA).
    20. Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.