IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220312901.html
   My bibliography  Save this article

n-Butanol and Oleic Acid Methyl Ester, Combustion and NVH Characteristics In Reactivity Controlled Compression Ignition

Author

Listed:
  • Soloiu, Valentin
  • Knowles, Aliyah R.
  • Carapia, Cesar E.
  • Moncada, Jose D.
  • Wiley, Justin T.
  • Kilpatrick, Margaret
  • Williams, Johnnie
  • Rahman, Mosfequr
  • Ilie, Marcel

Abstract

Combustion, noise and vibrations produced by n-Butanol and Oleic Acid Methyl Ester (MO) in Reactivity Controlled Compression Ignition (RCCI) were investigated. The Cetane Number was determined using a Constant Volume Combustion Chamber (CVCC) for MO100, ULSD, and n-Butanol and found to be 73.8, 47.2, and 16 respectively. In the case of the MO20Bu80 (Methyl Oleate 20% with 80% n-butanol), the maximum Apparent Heat Release Rate was higher compared to ULSD Classical Diesel Combustion (CDC), due to accumulation of fuel in the combustion chamber because of the longer ignition delay and cylinder and charge cooling effect of n-butanol. RCCI with Methyl-Oleate had a vibrations level of as much 4.5 (m/s2) higher than ULSD in CDC up to 2k Hz. The sound level found by the Acoustic Array sound level for MO20Bu80 in combustion was 4 (dB) louder than ULSD in CDC. RCCI was found to have its own acoustic spectrum compared to CDC, and this is because of the wider range and higher sound levels produced by RCCI. The study suggests that MO can be used as a surrogate fuel for full body biodiesel in RCCI combustion.

Suggested Citation

  • Soloiu, Valentin & Knowles, Aliyah R. & Carapia, Cesar E. & Moncada, Jose D. & Wiley, Justin T. & Kilpatrick, Margaret & Williams, Johnnie & Rahman, Mosfequr & Ilie, Marcel, 2020. "n-Butanol and Oleic Acid Methyl Ester, Combustion and NVH Characteristics In Reactivity Controlled Compression Ignition," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220312901
    DOI: 10.1016/j.energy.2020.118183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soloiu, Valentin & Moncada, Jose D. & Gaubert, Remi & Knowles, Aliyah & Molina, Gustavo & Ilie, Marcel & Harp, Spencer & Wiley, Justin T., 2018. "Reactivity Controlled Compression Ignition combustion and emissions using n-butanol and methyl oleate," Energy, Elsevier, vol. 165(PB), pages 911-924.
    2. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goyal, Harsh & Panthi, Niraj & AlRamadan, Abdullah S. & Cenker, Emre & Magnotti, Gaetano, 2023. "Analysis of energy flows and emission characteristics of conventional diesel and isobaric combustion in an optical engine with laser diagnostics," Energy, Elsevier, vol. 269(C).
    2. Xu, Guangfu & Duan, Huiquan & Cai, Yikang & Li, Yaopeng & Jia, Ming, 2023. "Potential of the reverse-reactivity controlled compression ignition (R-RCCI) combustion for maintaining ultra-low emissions and enhanced thermal efficiency," Energy, Elsevier, vol. 280(C).
    3. Tamilvanan, A. & Mohanraj, T. & Ashok, B. & Santhoshkumar, A., 2023. "Enhancement of energy conversion and emission reduction of Calophyllum inophyllum biodiesel in diesel engine using reactivity controlled compression ignition strategy and TOPSIS optimization," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    2. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    3. Bemani, Amin & Xiong, Qingang & Baghban, Alireza & Habibzadeh, Sajjad & Mohammadi, Amir H. & Doranehgard, Mohammad Hossein, 2020. "Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO- LSSVM models," Renewable Energy, Elsevier, vol. 150(C), pages 924-934.
    4. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    5. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
    6. Bora, Bhaskor J. & Saha, Ujjwal K., 2016. "Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios," Renewable Energy, Elsevier, vol. 87(P1), pages 782-790.
    7. Vu H. Nguyen & Minh Q. Duong & Kien T. Nguyen & Thin V. Pham & Phuong X. Pham, 2020. "An Extensive Analysis of Biodiesel Blend Combustion Characteristics under a Wide-Range of Thermal Conditions of a Cooperative Fuel Research Engine," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    8. Omidvarborna, Hamid & Kumar, Ashok & Kim, Dong-Shik, 2015. "Recent studies on soot modeling for diesel combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 635-647.
    9. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    10. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    11. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    12. Jeevanantham, A.K. & Nanthagopal, K. & Ashok, B. & Al-Muhtaseb, Ala'a H. & Thiyagarajan, S. & Geo, V. Edwin & Ong, Hwai Chyuan & Samuel, K. John, 2019. "Impact of addition of two ether additives with high speed diesel- Calophyllum Inophyllum biodiesel blends on NOx reduction in CI engine," Energy, Elsevier, vol. 185(C), pages 39-54.
    13. Bora, Bhaskor J. & Saha, Ujjwal K., 2015. "Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels," Renewable Energy, Elsevier, vol. 81(C), pages 490-498.
    14. Josef Maroušek & Anna Maroušková, 2021. "Economic Considerations on Nutrient Utilization in Wastewater Management," Energies, MDPI, vol. 14(12), pages 1-16, June.
    15. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    16. Asokan, M.A. & Prabu, S. Senthur & Khalife, Esmail & Sanjey, K.A. & Prathiba, S., 2024. "Vibration analysis using wavelet transformation technique and performance characteristics of a diesel engine fueled with tamarind biodiesel-diesel blends and diverse additives," Energy, Elsevier, vol. 294(C).
    17. Najjar, Yousef S.H., 2013. "Protection of the environment by using innovative greening technologies in land transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 480-491.
    18. Zhao, Wenbin & Wu, Haoqing & Mi, Shijie & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2023. "Experimental investigation of the control strategy of high load extension under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    19. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A. & Teoh, Yew Heng, 2022. "Palm biodiesel spray and combustion characteristics in a new micro gas turbine combustion chamber design," Energy, Elsevier, vol. 254(PB).
    20. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220312901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.