IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics0360544220307301.html
   My bibliography  Save this article

Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery

Author

Listed:
  • Liu, Xuepeng
  • Liu, Jian
  • Deng, Chun
  • Lee, Jui-Yuan
  • Tan, Raymond R.

Abstract

Hydrogen compressors are widely utilized to raise the pressure of hydrogen-rich streams in refineries to satisfy the operating pressure requirements of various hydrogenation units. Pressure relief valves are also placed to reduce the pressure of the hydrogen streams but this leads to a waste of energy. Alternatively, hydrogen turbines may be used in place of pressure relief valves to recover energy. This paper proposes a novel superstructure of a refinery hydrogen network involving hydrogen turbines to recover the expansion work. Such a configuration can be termed a hydrogen/work exchange network. Sequential mathematical models are developed with objective functions including the minimization of the flowrate of hydrogen utility, compression work, total power consumption and total annualized cost. A modified literature case study with five scenarios is solved. Results show that the total power consumption and the total annualized cost can be further reduced by 3.9% and 0.6% by recovering the expansion work of hydrogen-rich streams using hydrogen turbines.

Suggested Citation

  • Liu, Xuepeng & Liu, Jian & Deng, Chun & Lee, Jui-Yuan & Tan, Raymond R., 2020. "Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307301
    DOI: 10.1016/j.energy.2020.117623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Sidong & Yu, Zemiao & Feng, Xiao & Liu, Guilian & Deng, Chun & Chu, Khim Hoong, 2013. "Optimization of refinery hydrogen distribution systems considering the number of compressors," Energy, Elsevier, vol. 62(C), pages 185-195.
    2. Kumar, A. & Gautami, G. & Khanam, S., 2010. "Hydrogen distribution in the refinery using mathematical modeling," Energy, Elsevier, vol. 35(9), pages 3763-3772.
    3. Wang, Yufei & Wu, Sidong & Feng, Xiao & Deng, Chun, 2015. "An exergy-based approach for hydrogen network integration," Energy, Elsevier, vol. 86(C), pages 514-524.
    4. Umana, Blessing & Shoaib, Abeer & Zhang, Nan & Smith, Robin, 2014. "Integrating hydroprocessors in refinery hydrogen network optimisation," Applied Energy, Elsevier, vol. 133(C), pages 169-182.
    5. Deng, Chun & Zhu, Meiqian & Zhou, Yuhang & Feng, Xiao, 2018. "Novel conceptual methodology for hydrogen network design with minimum compression work," Energy, Elsevier, vol. 159(C), pages 203-215.
    6. Deng, Chun & Zhou, Yuhang & Chen, Cheng-Liang & Feng, Xiao, 2015. "Systematic approach for targeting interplant hydrogen networks," Energy, Elsevier, vol. 90(P1), pages 68-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiao & Yang, Sen & Feng, Xiao, 2021. "Thermodynamic principle based work exchanger network integration for cost-effective refinery hydrogen networks," Energy, Elsevier, vol. 230(C).
    2. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    3. Li, Zhendong & Yang, Minbo & Feng, Xiao, 2022. "Synthesis of refinery desulfurization solvent network with multi-stage solvent regeneration," Energy, Elsevier, vol. 257(C).
    4. Shukla, Gaurav & Chaturvedi, Nitin Dutt, 2023. "Targeting compression work in hydrogen allocation network with parametric uncertainties," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Wang & Shen, Renjie & Zhang, Di & Liu, Guilian, 2017. "The integration based method for identifying the variation trend of fresh hydrogen consumption and optimal purification feed," Energy, Elsevier, vol. 119(C), pages 732-743.
    2. Wang, Yufei & Wu, Sidong & Feng, Xiao & Deng, Chun, 2015. "An exergy-based approach for hydrogen network integration," Energy, Elsevier, vol. 86(C), pages 514-524.
    3. Zhang, Qiao & Yang, Sen & Feng, Xiao, 2021. "Thermodynamic principle based work exchanger network integration for cost-effective refinery hydrogen networks," Energy, Elsevier, vol. 230(C).
    4. Shukla, Gaurav & Chaturvedi, Nitin Dutt, 2023. "Targeting compression work in hydrogen allocation network with parametric uncertainties," Energy, Elsevier, vol. 262(PA).
    5. Yang, Minbo & Feng, Xiao & Chu, Khim Hoong & Liu, Guilian, 2014. "Graphical method for identifying the optimal purification process of hydrogen systems," Energy, Elsevier, vol. 73(C), pages 829-837.
    6. Wu, Sidong & Yu, Zemiao & Feng, Xiao & Liu, Guilian & Deng, Chun & Chu, Khim Hoong, 2013. "Optimization of refinery hydrogen distribution systems considering the number of compressors," Energy, Elsevier, vol. 62(C), pages 185-195.
    7. Umana, Blessing & Shoaib, Abeer & Zhang, Nan & Smith, Robin, 2014. "Integrating hydroprocessors in refinery hydrogen network optimisation," Applied Energy, Elsevier, vol. 133(C), pages 169-182.
    8. Bandyopadhyay, Rajarshi & Alkilde, Ole Frej & Menjon, Ian & Meyland, Lene Have & Sahlertz, Iggy Vincent, 2019. "Statistical analysis of variation of economic parameters affecting different configurations of diesel hydrotreating unit," Energy, Elsevier, vol. 183(C), pages 702-715.
    9. Hessam Golmohamadi & Amin Asadi, 2020. "Integration of Joint Power-Heat Flexibility of Oil Refinery Industries to Uncertain Energy Markets," Energies, MDPI, vol. 13(18), pages 1-25, September.
    10. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    11. Szabina Tomasek & Norbert Miskolczi, 2024. "Co-Pyrolysis of Sewage Sludge, Two-Component Special Municipal Waste and Plastic Waste," Energies, MDPI, vol. 17(15), pages 1-15, July.
    12. Jia, Nan & Zhang, Nan, 2011. "Multi-component optimisation for refinery hydrogen networks," Energy, Elsevier, vol. 36(8), pages 4663-4670.
    13. Deng, Chun & Zhu, Meiqian & Zhou, Yuhang & Feng, Xiao, 2018. "Novel conceptual methodology for hydrogen network design with minimum compression work," Energy, Elsevier, vol. 159(C), pages 203-215.
    14. Chen, Shizhao & Shen, Feifei & Zhong, Weimin & Peng, Xin & Du, Wei, 2024. "Synchronous adjustment framework for the integrated hydrogen network and production system: A concurrent optimization strategy of the system based on multi-model ensemble method," Applied Energy, Elsevier, vol. 360(C).
    15. Deng, Chun & Zhou, Yuhang & Chen, Cheng-Liang & Feng, Xiao, 2015. "Systematic approach for targeting interplant hydrogen networks," Energy, Elsevier, vol. 90(P1), pages 68-88.
    16. Hwangbo, Soonho & Lee, In-Beum & Han, Jeehoon, 2016. "Multi-period stochastic mathematical model for the optimal design of integrated utility and hydrogen supply network under uncertainty in raw material prices," Energy, Elsevier, vol. 114(C), pages 418-430.
    17. Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
    18. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.