IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics036054422030284x.html
   My bibliography  Save this article

Testing and performance evaluation of the STORM controller in two demonstration sites

Author

Listed:
  • Van Oevelen, Tijs
  • Vanhoudt, Dirk
  • Johansson, Christian
  • Smulders, Ed

Abstract

District heating and cooling (DHC) network control systems have a big part to play in enhancing energy system integration, which is vital to allow the transition towards a more sustainable and affordable energy system. The STORM controller is an example of an advanced DHC network controller that allows activating the flexibility from building thermal capacity. The STORM controller is capable of shifting and managing thermal demands in time, to improve the operational performance of an entire DHC system. This article presents the basic properties of the STORM controller, and the results of a field test campaign in two operational demonstration networks: in Heerlen (The Netherlands) and Rottne (Sweden). The performance of three control strategies is evaluated and discussed. The peak shaving strategy led to 3.1% reduction of peak heat production in Rottne. The market interaction tests demonstrated the possibility to temporarily increase the heat load by up to 96%, by charging the buildings, while limiting the overall heat consumption increase to 5.8%. The cell balancing tests in Heerlen achieved a 37–49% increase of the system capacity and peak reduction in the range 7.5–34%. DHC system operators can benefit from the STORM controller in the form of savings on operational costs and CO2 emissions, and increased system capacity.

Suggested Citation

  • Van Oevelen, Tijs & Vanhoudt, Dirk & Johansson, Christian & Smulders, Ed, 2020. "Testing and performance evaluation of the STORM controller in two demonstration sites," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s036054422030284x
    DOI: 10.1016/j.energy.2020.117177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030284X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    2. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    3. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    4. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saloux, Etienne & Runge, Jason & Zhang, Kun, 2023. "Operation optimization of multi-boiler district heating systems using artificial intelligence-based model predictive control: Field demonstrations," Energy, Elsevier, vol. 285(C).
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    4. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    5. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    6. Saloux, Etienne & Candanedo, José A., 2021. "Model-based predictive control to minimize primary energy use in a solar district heating system with seasonal thermal energy storage," Applied Energy, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costanza Saletti & Mirko Morini & Agostino Gambarotta, 2020. "The Status of Research and Innovation on Heating and Cooling Networks as Smart Energy Systems within Horizon 2020," Energies, MDPI, vol. 13(11), pages 1-27, June.
    2. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    3. Jangsten, Maria & Filipsson, Peter & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings," Energy, Elsevier, vol. 199(C).
    4. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    5. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    6. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    7. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    8. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
    9. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    10. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    11. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    12. Kurek, Teresa & Bielecki, Artur & Świrski, Konrad & Wojdan, Konrad & Guzek, Michał & Białek, Jakub & Brzozowski, Rafał & Serafin, Rafał, 2021. "Heat demand forecasting algorithm for a Warsaw district heating network," Energy, Elsevier, vol. 217(C).
    13. Sommer, Tobias & Sotnikov, Artem & Sulzer, Matthias & Scholz, Volkher & Mischler, Stefan & Rismanchi, Behzad & Gjoka, Kristian & Mennel, Stefan, 2022. "Hydrothermal challenges in low-temperature networks with distributed heat pumps," Energy, Elsevier, vol. 257(C).
    14. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    15. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    17. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    18. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Lennart Merkert & Ashvar Abdoul Haime & Sören Hohmann, 2019. "Optimal Scheduling of Combined Heat and Power Generation Units Using the Thermal Inertia of the Connected District Heating Grid as Energy Storage," Energies, MDPI, vol. 12(2), pages 1-9, January.
    20. Sorknæs, Peter & Nielsen, Steffen & Lund, Henrik & Mathiesen, Brian Vad & Moreno, Diana & Thellufsen, Jakob Zinck, 2022. "The benefits of 4th generation district heating and energy efficient datacentres," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s036054422030284x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.