IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics036054422030164x.html
   My bibliography  Save this article

Modified upright cup method for testing water vapor permeability in porous membranes

Author

Listed:
  • Mustapha, Rasha
  • Zoughaib, Assaad
  • Ghaddar, Nesreen
  • Ghali, Kamel

Abstract

A membrane based heat and mass exchanger is a promising technology used to control both sensible and latent loads. Membranes are porous materials that allow water vapor transmission from one medium to another. Water vapor permeability of these membranes is the key parameter for establishing their performance. Various techniques exist to measure the water vapor permeability in membranes of different types and characteristics. The most commonly used is the cup test based on the standards published by The American Society for Testing and Materials (ASTM). The upright cup test described in the ASTM E96 standard is mainly used to predict the values of low to moderate permeable materials where the air resistance above the cup is relatively small. This paper briefly describes the ASTM test and introduces a modified technique that infers the water vapor transmission in highly permeable materials considering explicitly the air resistance. Different porous materials, initially manufactured for considerations other than operating as membranes, are identified and experiments are conducted to derive their permeability using an identification method. The results of the experiments are subjected to an uncertainty analysis to assess the accuracy of the measuring technique showing acceptable values ranging from 8% to 26%.

Suggested Citation

  • Mustapha, Rasha & Zoughaib, Assaad & Ghaddar, Nesreen & Ghali, Kamel, 2020. "Modified upright cup method for testing water vapor permeability in porous membranes," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s036054422030164x
    DOI: 10.1016/j.energy.2020.117057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030164X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asfand, Faisal & Bourouis, Mahmoud, 2015. "A review of membrane contactors applied in absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 173-191.
    2. Zhang, Li-Zhi & Zhang, Ning, 2014. "A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation," Energy, Elsevier, vol. 65(C), pages 441-451.
    3. Yin, Xiaohong & Wang, Xinli & Li, Shaoyuan & Cai, Wenjian, 2016. "Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems," Energy, Elsevier, vol. 116(P1), pages 1006-1019.
    4. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    5. Chai, Shaowei & Sun, Xiangyu & Zhao, Yao & Dai, Yanjun, 2019. "Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger," Energy, Elsevier, vol. 171(C), pages 306-314.
    6. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    7. Bui, Duc Thuan & Kum Ja, M. & Gordon, Jeffrey M. & Ng, Kim Choon & Chua, Kian Jon, 2017. "A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification," Energy, Elsevier, vol. 132(C), pages 106-115.
    8. Bastien, Diane & Winther-Gaasvig, Martin, 2018. "Influence of driving rain and vapour diffusion on the hygrothermal performance of a hygroscopic and permeable building envelope," Energy, Elsevier, vol. 164(C), pages 288-297.
    9. Zhang, Chaobo & Xue, Xue & Zhao, Yang & Zhang, Xuejun & Li, Tingting, 2019. "An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2015. "CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems," Energy, Elsevier, vol. 91(C), pages 517-530.
    11. Che, Chunwen & Yin, Yonggao, 2019. "A statistical thermodynamic model for prediction of vapor pressure of mixed liquid desiccants near saturated solubility," Energy, Elsevier, vol. 175(C), pages 798-809.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
    2. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    4. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2017. "Adiabatic vs non-adiabatic membrane-based rectangular micro-absorbers for H2O-LiBr absorption chillers," Energy, Elsevier, vol. 134(C), pages 757-766.
    5. Chai, Shaowei & Sun, Xiangyu & Zhao, Yao & Dai, Yanjun, 2019. "Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger," Energy, Elsevier, vol. 171(C), pages 306-314.
    6. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    7. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    8. Sui, Zengguang & Sui, Yunren & Wu, Wei, 2022. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning," Energy, Elsevier, vol. 240(C).
    9. Alvaro A. S. Lima & Gustavo de N. P. Leite & Alvaro A. V. Ochoa & Carlos A. C. dos Santos & José A. P. da Costa & Paula S. A. Michima & Allysson M. A. Caldas, 2020. "Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications," Energies, MDPI, vol. 14(1), pages 1-41, December.
    10. Zhang, Chaobo & Li, Junyang & Zhao, Yang & Li, Tingting & Chen, Qi & Zhang, Xuejun & Qiu, Weikang, 2021. "Problem of data imbalance in building energy load prediction: Concept, influence, and solution," Applied Energy, Elsevier, vol. 297(C).
    11. Zhai, Chong & Wu, Wei, 2021. "Performance optimization and comparison towards compact and efficient absorption refrigeration system with conventional and emerging absorbers/desorbers," Energy, Elsevier, vol. 229(C).
    12. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    13. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2016. "Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems," Energy, Elsevier, vol. 115(P1), pages 781-790.
    14. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    15. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    16. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    17. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Suranjan Salins, Sampath & Kumar, Shiva & Shetty, Sawan & Raghavendra, R., 2024. "Theoretical and experimental study of the effect of biomass based organic packing wettability on the LDDS and its life cycle analysis," Renewable Energy, Elsevier, vol. 225(C).
    19. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    20. Fix, Andrew J. & Oh, Jinwoo & Braun, James E. & Warsinger, David M., 2024. "Dual-module humidity pump for efficient air dehumidification: Demonstration and performance limitations," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s036054422030164x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.