IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544219325654.html
   My bibliography  Save this article

Entropy and flame transfer function analysis of a hydrogen-fueled diffusion flame in a longitudinal combustor

Author

Listed:
  • Sun, Yuze
  • Zhao, Dan
  • Ni, Siliang
  • David, Tim
  • Zhang, Yang

Abstract

In this work, entropy generation and flame transfer function investigations are conducted on a hydrogen-burnt diffusion flame in a longitudinal combustor with acoustic waves present. For this, a time-domain 2D numerical model of a jet diffusion flame is developed to gain insights on its dynamic response to acoustic disturbances at either resonant or non-resonant frequencies. The model is validated first by comparing the numerical results such as turbulence intensities, pressure and velocity mode shape and flame shapes with the experimental data available in the literature. The model is then applied to evaluate the effects of the frequencies and amplitudes of the forcing acoustic waves, and the flame-holder/nozzle axial positions on entropy generation of both hydrogen- and propane-fueled flames. It is found that the entropy generation rate is sensitive to acoustic forcing frequencies, amplitudes and the nozzle axial positons. Furthermore, entropy produced from the heat conduction and the chemical reaction processes is shown to be dominant and secondary respectively. However, the mass diffusion is found to play a negligible role on the entropy generation. As the acoustic forcing frequency is set to 385 Hz near resonance, the total entropy generation rates are minimized, and the mass diffusion contribution is maximized with the flame being placed at velocity node locations in comparison with other flame-holding locations. Finally, flame transfer function (FTF) analysis is performed by using two different methods. It is shown that the flame responds strongly to low-frequency acoustic disturbances, acting like a band-pass filter. Increasing the acoustic intensity leads to the flame being more sensitive to the acoustic disturbances over more frequency bands.

Suggested Citation

  • Sun, Yuze & Zhao, Dan & Ni, Siliang & David, Tim & Zhang, Yang, 2020. "Entropy and flame transfer function analysis of a hydrogen-fueled diffusion flame in a longitudinal combustor," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325654
    DOI: 10.1016/j.energy.2019.116870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219325654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2017. "Acoustic and heat release signatures for swirl assisted distributed combustion," Applied Energy, Elsevier, vol. 193(C), pages 125-138.
    2. Safari, Mehdi & Sheikhi, M. Reza H., 2014. "Large eddy simulation-based analysis of entropy generation in a turbulent nonpremixed flame," Energy, Elsevier, vol. 78(C), pages 451-457.
    3. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    4. Karimi, Nader, 2014. "Response of a conical, laminar premixed flame to low amplitude acoustic forcing – A comparison between experiment and kinematic theories," Energy, Elsevier, vol. 78(C), pages 490-500.
    5. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    6. Laera, D. & Campa, G. & Camporeale, S.M., 2017. "A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors," Applied Energy, Elsevier, vol. 187(C), pages 216-227.
    7. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    8. Fichera, A. & Losenno, C. & Pagano, A., 2001. "Experimental analysis of thermo-acoustic combustion instability," Applied Energy, Elsevier, vol. 70(2), pages 179-191, October.
    9. Singh, A.V. & Yu, M. & Gupta, A.K. & Bryden, K.M., 2013. "Thermo-acoustic behavior of a swirl stabilized diffusion flame with heterogeneous sensors," Applied Energy, Elsevier, vol. 106(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Rongjun & Pan, Deng & Ji, Chenzhen & Zhu, Tong & Lu, Pengpeng & Gao, Han, 2020. "Combustion instability analysis on a partially premixed swirl combustor by thermoacoustic experiments and modeling," Energy, Elsevier, vol. 211(C).
    2. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Zhao, He & Zhao, Dan & Becker, Sid & Rong, Hui & Zhao, Xiaohuan, 2023. "Entropy generation and improved thermal performance investigation on a hydrogen-fuelled double-channel microcombustor with Y-shaped internal fins," Energy, Elsevier, vol. 283(C).
    4. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    2. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Ji, C.Z., 2018. "Numerical and experimental demonstration of actively passive mitigating self-sustained thermoacoustic oscillations," Applied Energy, Elsevier, vol. 222(C), pages 257-266.
    3. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    4. Zhao, He & Li, Guoneng & Zhao, Dan & Zhang, Zhiguo & Sun, Dakun & Yang, Wenming & Li, Shen & Lu, Zhengli & Zheng, Youqu, 2017. "Experimental study of equivalence ratio and fuel flow rate effects on nonlinear thermoacoustic instability in a swirl combustor," Applied Energy, Elsevier, vol. 208(C), pages 123-131.
    5. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    6. Li, Shen & Li, Qiangtian & Tang, Lin & Yang, Bin & Fu, Jianqin & Clarke, C.A. & Jin, Xiao & Ji, C.Z. & Zhao, He, 2016. "Theoretical and experimental demonstration of minimizing self-excited thermoacoustic oscillations by applying anti-sound technique," Applied Energy, Elsevier, vol. 181(C), pages 399-407.
    7. Zhao, Dan & Li, Shen & Zhao, He, 2016. "Entropy-involved energy measure study of intrinsic thermoacoustic oscillations," Applied Energy, Elsevier, vol. 177(C), pages 570-578.
    8. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    9. Zhao, Dan & Li, Shihuai & Yang, Wenming & Zhang, Zhiguo, 2015. "Numerical investigation of the effect of distributed heat sources on heat-to-sound conversion in a T-shaped thermoacoustic system," Applied Energy, Elsevier, vol. 144(C), pages 204-213.
    10. Li, Xinyan & Zhao, Dan & Yang, Xinglin & Wen, Huabing & Jin, Xiao & Li, Shen & Zhao, He & Xie, Changqing & Liu, Haili, 2016. "Transient growth of acoustical energy associated with mitigating thermoacoustic oscillations," Applied Energy, Elsevier, vol. 169(C), pages 481-490.
    11. Fattahi, A. & Hosseinalipour, S.M. & Karimi, N. & Saboohi, Z. & Ommi, F., 2019. "On the response of a lean-premixed hydrogen combustor to acoustic and dissipative-dispersive entropy waves," Energy, Elsevier, vol. 180(C), pages 272-291.
    12. Wu, Gang & Jin, Xiao & Li, Qiangtian & Zhao, He & Ahmed, I.R. & Fu, Jianqin, 2016. "Experimental and numerical definition of the extreme heater locations in a closed-open standing wave thermoacoustic system," Applied Energy, Elsevier, vol. 182(C), pages 320-330.
    13. Zhao, Dan & Li, Lei, 2015. "Effect of choked outlet on transient energy growth analysis of a thermoacoustic system," Applied Energy, Elsevier, vol. 160(C), pages 502-510.
    14. Li, Xinyan & Zhao, Dan & Yang, Xinglin, 2017. "Experimental and theoretical bifurcation study of a nonlinear standing-wave thermoacoustic system," Energy, Elsevier, vol. 135(C), pages 553-562.
    15. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    16. Wu, Gang & Lu, ZhengLi & Guan, Yiheng & Li, Yuelin & Ji, C.Z., 2018. "Characterizing nonlinear interaction between a premixed swirling flame and acoustics: Heat-driven acoustic mode switching and triggering," Energy, Elsevier, vol. 158(C), pages 546-554.
    17. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    18. Zhang, Zhiguo & Zhao, Dan & Dobriyal, R. & Zheng, Youqu & Yang, Wenming, 2015. "Theoretical and experimental investigation of thermoacoustics transfer function," Applied Energy, Elsevier, vol. 154(C), pages 131-142.
    19. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.