IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544219325241.html
   My bibliography  Save this article

Performance optimization of the dehumidifier with parallel-plate membrane modules

Author

Listed:
  • Li, Zengwen
  • Zhao, Hongxia
  • Han, Jitian
  • Wang, Xinli
  • Zhu, Jie

Abstract

A numerical model of a dehumidifier with parallel-plate membranes is established and validated, and the orthogonal optimization method is adopted to investigate the dehumidifier performance. The impact order of the main operating parameters, including dimensionless factors (mass flow rate ratio m∗ and number of heat transfer units NTU), air conditions (inlet air temperature and relative humidity) and solution conditions (inlet solution temperature and concentration), on the system effectiveness (i.e. sensible and latent effectiveness) is identified. The NTU is the most important parameter affecting the system effectiveness, followed by mass flow rate ratio m∗. Although the sensible and latent effectiveness increase with the NTU and m∗, no significant improvement can be achieved when their values are higher than 2 and 4 respectively. Increasing inlet solution concentration can enhance latent effectiveness without reducing sensible effectiveness. Inlet air temperature and relative humidity have weak influences on the system performance, but increasing the temperature difference between the inlet solution and air can make the outlet air achieve heat transfer balance within a shorter distance inside the dehumidifier.

Suggested Citation

  • Li, Zengwen & Zhao, Hongxia & Han, Jitian & Wang, Xinli & Zhu, Jie, 2020. "Performance optimization of the dehumidifier with parallel-plate membrane modules," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325241
    DOI: 10.1016/j.energy.2019.116829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219325241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    2. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Performance characteristics of cross-flow membrane contactors for liquid desiccant systems," Applied Energy, Elsevier, vol. 141(C), pages 1-11.
    3. Wu, Yifei & Zhao, Hongxia & Zhang, Cunquan & Wang, Lei & Han, Jitian, 2018. "Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test," Energy, Elsevier, vol. 151(C), pages 79-93.
    4. Liu, X.H. & Jiang, Y. & Chang, X.M. & Yi, X.Q., 2007. "Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator," Renewable Energy, Elsevier, vol. 32(10), pages 1623-1636.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    2. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    3. Cheng, Qing & Zhang, Xiaosong & Jiao, Shun, 2017. "Influence of concentration difference between dilute cells and regenerate cells on the performance of electrodialysis regenerator," Energy, Elsevier, vol. 140(P1), pages 646-655.
    4. Krzysztof Grysa & Artur Maciąg & Artur Ściana, 2022. "Comparison of the Efficiency of Cross-Flow Plate Heat Exchangers Made of Varied Materials," Energies, MDPI, vol. 15(22), pages 1-17, November.
    5. Llorenç Macia & Robert Castilla & Pedro Javier Gamez-Montero & Gustavo Raush, 2022. "Multi-Factor Design for a Vacuum Ejector Improvement by In-Depth Analysis of Construction Parameters," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    6. Giovanni Mazzuto & Filippo Emanuele Ciarapica & Marco Ortenzi & Maurizio Bevilacqua, 2021. "The Digital Twin Realization of an Ejector for Multiphase Flows," Energies, MDPI, vol. 14(17), pages 1-23, September.
    7. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    8. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    9. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    10. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    11. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    12. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    13. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    14. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    15. Zhan, Changfeng & Yin, Yonggao & Jin, Xing & Zhang, Xiaosong, 2018. "Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle," Energy, Elsevier, vol. 162(C), pages 60-71.
    16. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    17. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    18. Shen, Jianjian & Cheng, Chuntian & Zhang, Xiufei & Zhou, Binbin, 2018. "Coordinated operations of multiple-reservoir cascaded hydropower plants with cooperation benefit allocation," Energy, Elsevier, vol. 153(C), pages 509-518.
    19. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    20. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.