IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v184y2019icp113-122.html
   My bibliography  Save this article

Mathematical and computer models for identification and optimal control of large-scale gas supply systems

Author

Listed:
  • Sukharev, Mikhail G.
  • Kosova, Ksenia O.
  • Popov, Ruslan V.

Abstract

This paper considers an optimal control problem of large-scale gas supply systems. Solving this problem, we must take into account line packing in systems modeling.

Suggested Citation

  • Sukharev, Mikhail G. & Kosova, Ksenia O. & Popov, Ruslan V., 2019. "Mathematical and computer models for identification and optimal control of large-scale gas supply systems," Energy, Elsevier, vol. 184(C), pages 113-122.
  • Handle: RePEc:eee:energy:v:184:y:2019:i:c:p:113-122
    DOI: 10.1016/j.energy.2018.02.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadian Behrooz, Hesam & Boozarjomehry, R. Bozorgmehry, 2017. "Dynamic optimization of natural gas networks under customer demand uncertainties," Energy, Elsevier, vol. 134(C), pages 968-983.
    2. Chiang, Nai-Yuan & Zavala, Victor M., 2016. "Large-scale optimal control of interconnected natural gas and electrical transmission systems," Applied Energy, Elsevier, vol. 168(C), pages 226-235.
    3. Roger Ríos-Mercado & Suming Wu & L. Scott & E. Boyd, 2002. "A Reduction Technique for Natural Gas Transmission Network Optimization Problems," Annals of Operations Research, Springer, vol. 117(1), pages 217-234, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sukharev, Mikhail G. & Kulalaeva, Maria A., 2021. "Identification of model flow parameters and model coefficients with the help of integrated measurements of pipeline system operation parameters," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    2. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    3. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    4. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    5. Fränk Plein & Johannes Thürauf & Martine Labbé & Martin Schmidt, 2022. "A bilevel optimization approach to decide the feasibility of bookings in the European gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 409-449, June.
    6. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    7. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    8. Johannes Thürauf, 2022. "Deciding the feasibility of a booking in the European gas market is coNP-hard," Annals of Operations Research, Springer, vol. 318(1), pages 591-618, November.
    9. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    10. Wang, Jingfan & Tchapmi, Lyne P. & Ravikumar, Arvind P. & McGuire, Mike & Bell, Clay S. & Zimmerle, Daniel & Savarese, Silvio & Brandt, Adam R., 2020. "Machine vision for natural gas methane emissions detection using an infrared camera," Applied Energy, Elsevier, vol. 257(C).
    11. Brian Sergi & Kwabena Pambour, 2022. "An Evaluation of Co-Simulation for Modeling Coupled Natural Gas and Electricity Networks," Energies, MDPI, vol. 15(14), pages 1-18, July.
    12. Wen, Kai & Jiao, Jianfeng & Zhao, Kang & Yin, Xiong & Liu, Yuan & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Rapid transient operation control method of natural gas pipeline networks based on user demand prediction," Energy, Elsevier, vol. 264(C).
    13. Liu, Jia & Cheng, Haozhong & Zeng, Pingliang & Yao, Liangzhong & Shang, Ce & Tian, Yuan, 2018. "Decentralized stochastic optimization based planning of integrated transmission and distribution networks with distributed generation penetration," Applied Energy, Elsevier, vol. 220(C), pages 800-813.
    14. Olfati, Mohammad & Bahiraei, Mehdi & Veysi, Farzad, 2019. "A novel modification on preheating process of natural gas in pressure reduction stations to improve energy consumption, exergy destruction and CO2 emission: Preheating based on real demand," Energy, Elsevier, vol. 173(C), pages 598-609.
    15. Krebs, Vanessa & Schewe, Lars & Schmidt, Martin, 2018. "Uniqueness and multiplicity of market equilibria on DC power flow networks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 165-178.
    16. Peng, Jinghong & Zhou, Jun & Liang, Guangchuan & Li, Chengyu & Qin, Can, 2024. "Multi-period integrated scheduling optimization of complex natural gas pipeline network system with underground gas storage to ensure economic and environmental benefits," Energy, Elsevier, vol. 302(C).
    17. Zalitis, Ivars & Dolgicers, Aleksandrs & Zemite, Laila & Ganter, Sebastian & Kopustinskas, Vytis & Vamanu, Bogdan & Finger, Jörg & Fuggini, Clemente & Bode, Ilmars & Kozadajevs, Jevgenijs & Häring, Iv, 2022. "Mitigation of the impact of disturbances in gas transmission systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    18. Corbet, Thomas F. & Beyeler, Walt & Wilson, Michael L. & Flanagan, Tatiana P., 2018. "A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 451-465.
    19. Tianhu Deng & Yong Liang & Shixuan Zhang & Jingze Ren & Shuyi Zheng, 2019. "A Dynamic Programming Approach to Power Consumption Minimization in Gunbarrel Natural Gas Networks with Nonidentical Compressor Units," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 593-611, July.
    20. Noor Yusuf & Tareq Al-Ansari, 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models," Energies, MDPI, vol. 16(22), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:184:y:2019:i:c:p:113-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.