A heat driven elastocaloric cooling system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.06.094
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
- Tan, Jianming & Wang, Yao & Xu, Shijie & Liu, Huaican & Qian, Suxin, 2020. "Thermodynamic cycle analysis of heat driven elastocaloric cooling system," Energy, Elsevier, vol. 197(C).
- Mubarak Ismail & Metkel Yebiyo & Issa Chaer, 2021. "A Review of Recent Advances in Emerging Alternative Heating and Cooling Technologies," Energies, MDPI, vol. 14(2), pages 1-24, January.
- Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
- Žiga Ahčin & Parham Kabirifar & Luka Porenta & Miha Brojan & Jaka Tušek, 2022. "Numerical Modeling of Shell-and-Tube-like Elastocaloric Regenerator," Energies, MDPI, vol. 15(23), pages 1-28, December.
- Han, Yuan & Zhang, Houcheng, 2022. "Potentiality of elastocaloric cooling system for high-temperature proton exchange membrane fuel cell waste heat harvesting," Renewable Energy, Elsevier, vol. 200(C), pages 1166-1179.
- Qian, Suxin & Wang, Yao & Xu, Shijie & Chen, Yanliang & Yuan, Lifen & Yu, Jianlin, 2021. "Cascade utilization of low-grade thermal energy by coupled elastocaloric power and cooling cycle," Applied Energy, Elsevier, vol. 298(C).
- Zhao, Qin & Li, Pengcheng & Zhang, Houcheng, 2024. "Dually boosting the performance of photovoltaic module via integrating elastocaloric cooler," Energy, Elsevier, vol. 295(C).
- Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
- Ma, Liuyang & Zhao, Qin & Zhang, Houcheng & Hou, Shujin & Zhao, Jiapei & Wang, Fu & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Performance analysis of a concentrated photovoltaic cell-elastocaloric cooler hybrid system for power and cooling cogeneration," Energy, Elsevier, vol. 239(PD).
More about this item
Keywords
Solid-state cooling; Non-vapor compression; Thermoelastic cooling; Shape memory alloys; Heat activated cooling; Low grade thermal energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:881-899. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.