IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp881-899.html
   My bibliography  Save this article

A heat driven elastocaloric cooling system

Author

Listed:
  • Qian, Suxin
  • Wang, Yao
  • Yuan, Lifen
  • Yu, Jianlin

Abstract

Elastocaloric cooling is based on the latent heat associated with phase transformation upon stress variations in shape memory materials, which has significant potential to reduce the environmental footprints for air-conditioning and refrigeration industry. However, current elastocaloric cooling prototypes are limited by their driver to refrigerant mass ratio of over 500. To overcome this bottleneck, a new cycle using high temperature shape memory alloy as the heat driven actuator is proposed, which can precisely match the force-displacement characteristics of the refrigerant super-elastic alloy, and thus could potentially reduce the driver to refrigerant mass ratio down to the magnitude of 1. Numerical simulations are carried out to study the transient characteristics of the new cycle and the impacts of the heat source temperature and transformation temperatures of the actuator alloy. These two groups of parameters are correlated as the thermodynamic driving temperature differences. Furthermore, the theoretical minimum driving temperature shows that a low grade heat source around 80 °C is sufficient, which opens a new path for better utilization of the renewable energy and the waste heat. In the end, the design of a demonstrator based on the proposed cycle is presented, which shows a new path to develop compact elastocaloric cooling prototypes.

Suggested Citation

  • Qian, Suxin & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2019. "A heat driven elastocaloric cooling system," Energy, Elsevier, vol. 182(C), pages 881-899.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:881-899
    DOI: 10.1016/j.energy.2019.06.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    2. Tan, Jianming & Wang, Yao & Xu, Shijie & Liu, Huaican & Qian, Suxin, 2020. "Thermodynamic cycle analysis of heat driven elastocaloric cooling system," Energy, Elsevier, vol. 197(C).
    3. Mubarak Ismail & Metkel Yebiyo & Issa Chaer, 2021. "A Review of Recent Advances in Emerging Alternative Heating and Cooling Technologies," Energies, MDPI, vol. 14(2), pages 1-24, January.
    4. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    5. Qian, Suxin & Wang, Yao & Xu, Shijie & Chen, Yanliang & Yuan, Lifen & Yu, Jianlin, 2021. "Cascade utilization of low-grade thermal energy by coupled elastocaloric power and cooling cycle," Applied Energy, Elsevier, vol. 298(C).
    6. Zhao, Qin & Li, Pengcheng & Zhang, Houcheng, 2024. "Dually boosting the performance of photovoltaic module via integrating elastocaloric cooler," Energy, Elsevier, vol. 295(C).
    7. Žiga Ahčin & Parham Kabirifar & Luka Porenta & Miha Brojan & Jaka Tušek, 2022. "Numerical Modeling of Shell-and-Tube-like Elastocaloric Regenerator," Energies, MDPI, vol. 15(23), pages 1-28, December.
    8. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    9. Han, Yuan & Zhang, Houcheng, 2022. "Potentiality of elastocaloric cooling system for high-temperature proton exchange membrane fuel cell waste heat harvesting," Renewable Energy, Elsevier, vol. 200(C), pages 1166-1179.
    10. Ma, Liuyang & Zhao, Qin & Zhang, Houcheng & Hou, Shujin & Zhao, Jiapei & Wang, Fu & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Performance analysis of a concentrated photovoltaic cell-elastocaloric cooler hybrid system for power and cooling cogeneration," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:881-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.