IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp556-571.html
   My bibliography  Save this article

Incorporating agricultural waste-to-energy pathways into biomass product and process network through data-driven nonlinear adaptive robust optimization

Author

Listed:
  • Nicoletti, Jack
  • Ning, Chao
  • You, Fengqi

Abstract

A biomass product and process network that displays how organic waste and other non-traditional biomass feedstocks may be converted into useful bioproducts and biofuels is a necessary addition to the field of biomass conversion and utilization. We develop a processing network of 216 technologies and 172 materials/compounds that contains conversion pathways of agricultural and organic waste biomass sources, such as food peels, animal manure, and grease. To examine the effectiveness and economic feasibility of these conversion pathways, the biomass product and process network is optimized for return on investment. The resulting problem is a data-driven two-stage adaptive robust mixed-integer nonlinear fractional program, which was effectively solved via a tailored optimization algorithm. The proposed approach is applied to two case studies in which traditional agricultural feedstocks are used alongside biological and agricultural waste feedstocks. The selected feedstocks were used to satisfy and, in some cases, even exceed demand for selected products. The optimal pathways have returns on investment of 26.1% and 6.2%, with utilized conversion technologies ranging from hydrocracking to microwave hydrodiffusion. In both cases, we find that profitable processing pathways are utilized at maximum capacities to increase return on investment. Specifically, in the case study where orange peel wastes are used to produce pectin, we find that this pathway is highly profitable at the given market price. The two cases that are run using the proposed model are then compared to additional cases to display differences that arise when uncertainty is not considered and the objective function of the model is changed.

Suggested Citation

  • Nicoletti, Jack & Ning, Chao & You, Fengqi, 2019. "Incorporating agricultural waste-to-energy pathways into biomass product and process network through data-driven nonlinear adaptive robust optimization," Energy, Elsevier, vol. 180(C), pages 556-571.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:556-571
    DOI: 10.1016/j.energy.2019.05.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219309739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fengqi You & Ignacio Grossmann, 2013. "Multicut Benders decomposition algorithm for process supply chain planning under uncertainty," Annals of Operations Research, Springer, vol. 210(1), pages 191-211, November.
    2. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    3. Balaman, Şebnem Yılmaz & Selim, Hasan, 2014. "A network design model for biomass to energy supply chains with anaerobic digestion systems," Applied Energy, Elsevier, vol. 130(C), pages 289-304.
    4. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    5. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
    2. Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Nicoletti, Jack & You, Fengqi, 2020. "Multiobjective economic and environmental optimization of global crude oil purchase and sale planning with noncooperative stakeholders," Applied Energy, Elsevier, vol. 259(C).
    4. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    5. David Palma-Heredia & Manel Poch & Miquel À. Cugueró-Escofet, 2020. "Implementation of a Decision Support System for Sewage Sludge Management," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    6. Xu, Xiao & Hu, Weihao & Du, Yuefang & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2020. "Robust chance-constrained gas management for a standalone gas supply system based on wind energy," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    2. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    3. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    4. Byung Chung & Tao Yao & Chi Xie & Andreas Thorsen, 2011. "Robust Optimization Model for a Dynamic Network Design Problem Under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 11(2), pages 371-389, June.
    5. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    6. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    7. Nikulin, Yury, 2005. "Simulated annealing algorithm for the robust spanning tree problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 591, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    9. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    10. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    11. Emmanuel Kwasi Mensah, 2020. "Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 491-518, December.
    12. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    13. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    14. Wei, Cansheng & Li, Yongjian & Cai, Xiaoqiang, 2011. "Robust optimal policies of production and inventory with uncertain returns and demand," International Journal of Production Economics, Elsevier, vol. 134(2), pages 357-367, December.
    15. Bohle, Carlos & Maturana, Sergio & Vera, Jorge, 2010. "A robust optimization approach to wine grape harvesting scheduling," European Journal of Operational Research, Elsevier, vol. 200(1), pages 245-252, January.
    16. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    17. Nikulin, Y. & Karelkina, O. & Mäkelä, M.M., 2013. "On accuracy, robustness and tolerances in vector Boolean optimization," European Journal of Operational Research, Elsevier, vol. 224(3), pages 449-457.
    18. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Hafezalkotob, Ashkan & Makui, Ahmad, 2015. "Cooperative maximum-flow problem under uncertainty in logistic networks," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 593-604.
    20. Varas, Mauricio & Maturana, Sergio & Pascual, Rodrigo & Vargas, Ignacio & Vera, Jorge, 2014. "Scheduling production for a sawmill: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 150(C), pages 37-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:556-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.