IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v17y1992i1p25-36.html
   My bibliography  Save this article

The use of growth curves in energy studies

Author

Listed:
  • Ang, B.W.
  • Ng, T.T.

Abstract

This paper consists of three inter-related parts. The first is a survey study on the application of growth curves to energy studies. A description on each of the four identified application areas, namely, energy resource analysis, energy demand modeling, fuel substitution, and energy technology development, is presented. The second part deals with the functional forms and mathematical properties of several commonly used growth-curve models. The extension to the basic functional forms to incorporate explicative variables and its relevance to energy studies are discussed. The last part is a case study on the modeling of the diffusion of energy-consuming durables using several growth-curve models. The forecasting performance of these models is compared and discussed.

Suggested Citation

  • Ang, B.W. & Ng, T.T., 1992. "The use of growth curves in energy studies," Energy, Elsevier, vol. 17(1), pages 25-36.
  • Handle: RePEc:eee:energy:v:17:y:1992:i:1:p:25-36
    DOI: 10.1016/0360-5442(92)90030-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544292900304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(92)90030-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    2. Purohit, Pallav & Michaelowa, Axel, 2008. "CDM potential of SPV pumps in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 181-199, January.
    3. Davidsson, Simon & Grandell, Leena & Wachtmeister, Henrik & Höök, Mikael, 2014. "Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy," Energy Policy, Elsevier, vol. 73(C), pages 767-776.
    4. Chaurey, A. & Kandpal, T.C., 2009. "Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance," Energy Policy, Elsevier, vol. 37(1), pages 115-125, January.
    5. Pina, André & Silva, Carlos & Ferrão, Paulo, 2011. "Modeling hourly electricity dynamics for policy making in long-term scenarios," Energy Policy, Elsevier, vol. 39(9), pages 4692-4702, September.
    6. Purohit, Pallav & Michaelowa, Axel, 2007. "CDM potential of wind power projects in India," HWWI Research Papers 1-8, Hamburg Institute of International Economics (HWWI).
    7. Celik, A.N., 2003. "A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage," Renewable Energy, Elsevier, vol. 28(4), pages 561-572.
    8. Ang, B. W., 2004. "Growth curves for long-term global CO2 emission reduction analysis," Energy Policy, Elsevier, vol. 32(14), pages 1569-1572, September.
    9. Purohit, Pallav & Michaelowa, Axel, 2007. "CDM potential of bagasse cogeneration in India," Energy Policy, Elsevier, vol. 35(10), pages 4779-4798, October.
    10. Purohit, Pallav & Kandpal, Tara C., 2005. "Renewable energy technologies for irrigation water pumping in India: projected levels of dissemination, energy delivery and investment requirements using available diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 592-607, December.
    11. Pallav Purohit & Axel Michaelowa, 2008. "CDM potential of SPV lighting systems in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(1), pages 23-46, January.
    12. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) Part 2: Methodology," Ecological Economics, Elsevier, vol. 73(C), pages 158-167.
    13. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "A trigonometric grey prediction approach to forecasting electricity demand," Energy, Elsevier, vol. 31(14), pages 2839-2847.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:17:y:1992:i:1:p:25-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.