IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v178y2019icp168-175.html
   My bibliography  Save this article

Efficient photocatalytic CO2 reduction by P–O linked g-C3N4/TiO2-nanotubes Z-scheme composites

Author

Listed:
  • Wu, Jing
  • Feng, Yujie
  • Li, Da
  • Han, Xiaoyu
  • Liu, Jia

Abstract

P–O linked g-C3N4/TiO2-nanotubes (TNTs) Z-scheme composites were fabricated using a solid sublimation and conversion means, followed by an impregnation method for the first time, and they were characterized by scanning electrons microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV–visible diffuse reflection spectroscopy. The photocatalytic activity was investigated by CO2 reduction and the charge separation was investigated by surface photovoltage spectroscopy and produced OH radicals. Results showed that CO2 reduction products of acetic, methanol and formic acids with yields of 46.9 ± 0.76 mg L−1 h−1, 38.2 ± 0.69 mg L−1 h−1 and 28.8 ± 0.64 mg L−1 h−1 were obtained using the optimized sample, which were 3.3, 3.5 and 3.8 times of bare TNTs. The optimized sample also showed a transient photocurrent of 0.85 mA cm−2. The enhanced performance was due to the synergistic effect of g-C3N4 and P–O links. The modified g-C3N4 enhanced visible light absorption and charge separation. The P–O links between g-C3N4 and TNTs were benefit for charge transfer. This work contributes to help us comprehend the mechanism of charge transfer and separation in Z-scheme composites, and presents a workable approach for preparing efficient TNTs-based photocatalysts for energy production.

Suggested Citation

  • Wu, Jing & Feng, Yujie & Li, Da & Han, Xiaoyu & Liu, Jia, 2019. "Efficient photocatalytic CO2 reduction by P–O linked g-C3N4/TiO2-nanotubes Z-scheme composites," Energy, Elsevier, vol. 178(C), pages 168-175.
  • Handle: RePEc:eee:energy:v:178:y:2019:i:c:p:168-175
    DOI: 10.1016/j.energy.2019.04.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shao, Zhou & Li, Hongji & Li, Mingji & Li, Cuiping & Qu, Changqing & Yang, Baohe, 2015. "Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors," Energy, Elsevier, vol. 87(C), pages 578-585.
    2. Liu, Huan & Wang, Xiaodong & Wu, Dezhen & Ji, Shengfu, 2019. "Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation," Energy, Elsevier, vol. 172(C), pages 599-617.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Ruiming & Yang, Zhongqing & Wang, Ziqi & Ran, Jingyu & Yan, Yunfei & Zhang, Li, 2022. "Novel non-noble metal catalyst with high efficiency and synergetic photocatalytic hydrolysis of ammonia borane and mechanism investigation," Energy, Elsevier, vol. 244(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Yuntao & Wang, Ting & He, Zhenglong & Sun, Yong & Song, Shuanglin & Cui, Xinfeng & Cao, Yingjiazi, 2023. "High thermal storage capacity phase change microcapsules for heat transfer enhancement through hydroxylated-silanized nano-silicon carbide," Energy, Elsevier, vol. 285(C).
    2. Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).
    3. Miao, Fujun & Shao, Changlu & Li, Xinghua & Lu, Na & Wang, Kexin & Zhang, Xin & Liu, Yichun, 2016. "Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors," Energy, Elsevier, vol. 95(C), pages 233-241.
    4. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    5. Hong, Wei & Wang, Jinqing & Li, Zhangpeng & Yang, Shengrong, 2015. "Fabrication of Co3O4@Co–Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage," Energy, Elsevier, vol. 93(P1), pages 435-441.
    6. Wang, Chaoming & Chen, Ke & Huang, Jun & Cai, Zhengyu & Hu, Zhanjiang & Wang, Tingjun, 2019. "Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives," Energy, Elsevier, vol. 180(C), pages 873-880.
    7. Shang, Bofeng & Yang, Gui & Zhang, Bin, 2024. "Phase change nanocapsules incorporated with nanodiamonds for efficient photothermal energy conversion and storage," Applied Energy, Elsevier, vol. 360(C).
    8. Wang, Keliang & Cao, Yuhe & Wang, Xiaomin & Kharel, Parashu Ram & Gibbons, William & Luo, Bing & Gu, Zhengrong & Fan, Qihua & Metzger, Lloyd, 2016. "Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors," Energy, Elsevier, vol. 101(C), pages 9-15.
    9. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2015. "Electrodeposition of three-dimensional ZnO@MnO2 core–shell nanocables as high-performance electrode material for supercapacitors," Energy, Elsevier, vol. 93(P2), pages 1259-1266.
    10. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    11. Wang, Kai & Yan, Ting & Zhao, Y.M. & Li, G.D. & Pan, W.G., 2022. "Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage," Energy, Elsevier, vol. 242(C).
    12. Zhao, Aiqin & Xiao, Xi & Hu, Zhong-Ting & Zhu, Weiping & Yang, Jinglei & Yang, En-Hua, 2024. "Multifunctional F-doped TiO2 PCM microcapsules for visible-light-driven photocatalysis and latent heat storage," Applied Energy, Elsevier, vol. 359(C).
    13. Khalaj, Maryam & Sedghi, Arman & Miankushki, Hoda Nourmohammadi & Golkhatmi, Sanaz Zarabi, 2019. "Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes," Energy, Elsevier, vol. 188(C).
    14. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2016. "Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors," Applied Energy, Elsevier, vol. 178(C), pages 260-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:178:y:2019:i:c:p:168-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.