IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v177y2019icp94-105.html
   My bibliography  Save this article

Investigations on experimental performance and system behavior of 10 kW organic Rankine cycle using scroll-type expander for low-grade heat source

Author

Listed:
  • Lin, Chih-Hung
  • Hsu, Pei-Pei
  • He, Ya-Ling
  • Shuai, Yong
  • Hung, Tzu-Chen
  • Feng, Yong-Qiang
  • Chang, Yu-Hsuan

Abstract

In this study, experimental characteristics of a 10 kW organic Rankine cycle (ORC) with R245fa were investigated for low-grade waste heat recovery. A semi-hermetic scroll-type expander was utilized with proper lubrication. The conductive oil loop using electric heaters was to simulate low-grade heat source. The temperature and heat power of the heat source were set to 120 °C and 34–77 kW, respectively. Results showed that pressure ratio and degree of superheating exhibit high sensitivity on system performance. The trend of isentropic efficiency for expander presented decreasing with pressure ratio in rise, while pressure ratio for the inlet and outlet of the expander is larger than 4. In addition, there is a particular phenomenon existing under low pinch point temperature. Mass flow rate and pressure ratio exhibited periodic distribution with time, while the pinch point temperature is lower than 10 °C. It means that the pinch point temperature has a critical value, which leads to the supply of heat source not under stable situation for low pinch point temperature. This phenomenon of thermal fluctuation may result in reduce useful life for system components. The maximum measured electrical power, net thermal efficiency and net electricity efficiency are 6.2 kW, 8.9% and 7.9%, respectively. As a consequence, the electricity generation and net electricity efficiency could be further raised while the simulated heat power increases based on the present efforts. The present work demonstrates the potential of scroll-type expander for the small-scaled ORC applications, such as industrial waste heat recovery, geothermal energy.

Suggested Citation

  • Lin, Chih-Hung & Hsu, Pei-Pei & He, Ya-Ling & Shuai, Yong & Hung, Tzu-Chen & Feng, Yong-Qiang & Chang, Yu-Hsuan, 2019. "Investigations on experimental performance and system behavior of 10 kW organic Rankine cycle using scroll-type expander for low-grade heat source," Energy, Elsevier, vol. 177(C), pages 94-105.
  • Handle: RePEc:eee:energy:v:177:y:2019:i:c:p:94-105
    DOI: 10.1016/j.energy.2019.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ntavou, Erika & Kosmadakis, George & Manolakos, Dimitris & Papadakis, George & Papantonis, Dimitris, 2017. "Experimental testing of a small-scale two stage Organic Rankine Cycle engine operating at low temperature," Energy, Elsevier, vol. 141(C), pages 869-879.
    2. Shao, Long & Ma, Xinling & Wei, Xinli & Hou, Zhonglan & Meng, Xiangrui, 2017. "Design and experimental study of a small-sized organic Rankine cycle system under various cooling conditions," Energy, Elsevier, vol. 130(C), pages 236-245.
    3. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    4. D'Amico, F. & Pallis, P. & Leontaritis, A.D. & Karellas, S. & Kakalis, N.M. & Rech, S. & Lazzaretto, A., 2018. "Semi-empirical model of a multi-diaphragm pump in an Organic Rankine Cycle (ORC) experimental unit," Energy, Elsevier, vol. 143(C), pages 1056-1071.
    5. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    6. Wang, Hailei & Peterson, Richard & Harada, Kevin & Miller, Erik & Ingram-Goble, Robbie & Fisher, Luke & Yih, James & Ward, Chris, 2011. "Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling," Energy, Elsevier, vol. 36(1), pages 447-458.
    7. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2016. "Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy," Energy, Elsevier, vol. 95(C), pages 324-345.
    8. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    9. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    10. Miao, Zheng & Xu, Jinliang & Zhang, Kai, 2017. "Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander," Energy, Elsevier, vol. 134(C), pages 35-49.
    11. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    12. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    13. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    14. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2012. "Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications," Applied Energy, Elsevier, vol. 97(C), pages 792-801.
    15. Wang, Z.Q. & Zhou, N.J. & Guo, J. & Wang, X.Y., 2012. "Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat," Energy, Elsevier, vol. 40(1), pages 107-115.
    16. Feng, Yong-qiang & Hung, Tzu-Chen & Su, Ting-Ying & Wang, Shuang & Wang, Qian & Yang, Shih-Cheng & Lin, Jaw-Ren & Lin, Chih-Hung, 2017. "Experimental investigation of a R245fa-based organic Rankine cycle adapting two operation strategies: Stand alone and grid connect," Energy, Elsevier, vol. 141(C), pages 1239-1253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carraro, Gianluca & Bori, Viola & Lazzaretto, Andrea & Toniato, Giuseppe & Danieli, Piero, 2020. "Experimental investigation of an innovative biomass-fired micro-ORC system for cogeneration applications," Renewable Energy, Elsevier, vol. 161(C), pages 1226-1243.
    2. Hsieh, Jui-Ching & Chen, Yen-Hsun & Hsieh, Yi-Chi, 2023. "Experimental study of an organic Rankine cycle with a variable-rotational-speed scroll expander at various heat source temperatures," Energy, Elsevier, vol. 270(C).
    3. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    4. Zhang, Yi-Fan & Li, Ming-Jia & Ren, Xiao & Duan, Xin-Yue & Wu, Chia-Jung & Xi, Huan & Feng, Yong-Qiang & Gong, Liang & Hung, Tzu-Chen, 2022. "Effect of heat source supplies on system behaviors of ORCs with different capacities: An experimental comparison between the 3 kW and 10 kW unit," Energy, Elsevier, vol. 254(PB).
    5. Tsai, Yu-Chun & Feng, Yong-Qiang & Shuai, Yong & Lai, Jhao-Hong & Leung, Michael K.H. & Wei, Yen & Hsu, Hua-Yi & Hung, Tzu-Chen, 2023. "Experimental validation of a 0.3 kW ORC for the future purposes in the study of low-grade thermal to power conversion," Energy, Elsevier, vol. 285(C).
    6. Lei, Biao & Yu, Hai-bin & Li, Guo-qiang & Wu, Yu-Ting & Wang, Wei, 2022. "Thermodynamic investigations on internal generator cooling for hermetic expanders in Organic Rankine Cycles," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    2. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    3. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    4. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    5. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    6. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    7. Miao, Zheng & Xu, Jinliang & Zhang, Kai, 2017. "Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander," Energy, Elsevier, vol. 134(C), pages 35-49.
    8. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    9. Zhu, Jie & Chen, Ziwei & Huang, Hulin & Yan, Yuying, 2016. "Effect of resistive load on the performance of an organic Rankine cycle with a scroll expander," Energy, Elsevier, vol. 95(C), pages 21-28.
    10. Zhao, Ying-Kun & Lei, Biao & Wu, Yu-Ting & Zhi, Rui-Ping & Wang, Wei & Guo, Hang & Ma, Chong-Fang, 2018. "Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons," Energy, Elsevier, vol. 165(PB), pages 769-775.
    11. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    12. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    13. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    14. Yang, Lixiang & Gong, Maoqiong & Guo, Hao & Dong, Xueqiang & Shen, Jun & Wu, Jianfeng, 2016. "Effects of critical and boiling temperatures on system performance and fluid selection indicator for low temperature organic Rankine cycles," Energy, Elsevier, vol. 109(C), pages 830-844.
    15. Shao, Long & Ma, Xinling & Wei, Xinli & Hou, Zhonglan & Meng, Xiangrui, 2017. "Design and experimental study of a small-sized organic Rankine cycle system under various cooling conditions," Energy, Elsevier, vol. 130(C), pages 236-245.
    16. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    17. Lei, Biao & Wu, Yu-Ting & Wang, Wei & Wang, Jing-Fu & Ma, Chong-Fang, 2014. "A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 78(C), pages 846-853.
    18. Li, Yung-Ming & Hung, Tzu-Chen & Wu, Chia-Jung & Su, Ting-Ying & Xi, Huan & Wang, Chi-Chuan, 2021. "Experimental investigation of 3-kW organic Rankine cycle (ORC) system subject to heat source conditions: A new appraisal for assessment," Energy, Elsevier, vol. 217(C).
    19. Jianhua Zhang & Jiancun Feng & Yeli Zhou & Fang Fang & Hong Yue, 2012. "Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles," Energies, MDPI, vol. 5(12), pages 1-15, December.
    20. Zhang, Hong-Hu & Xi, Huan & He, Ya-Ling & Zhang, Yu-Wen & Ning, Bo, 2019. "Experimental study of the organic rankine cycle under different heat and cooling conditions," Energy, Elsevier, vol. 180(C), pages 678-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:177:y:2019:i:c:p:94-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.