IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp40-52.html
   My bibliography  Save this article

Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power generation systems

Author

Listed:
  • Lu, Kai-Hung
  • Hong, Chih-Ming
  • Xu, Qiangqiang

Abstract

A new approach to rotational speed control structures based on an optimized intelligent recurrent wavelet-based Elman neural network (RWENN) controller used for the integration of offshore wind and wave energy conversion systems driven by a doubly fed induction generator. The nodes connecting the weights of the RWENN are trained online using a backpropagation method. A modified gravitational search algorithm (MGSA) is developed to adjust the learning rates and improve learning capability. The proposed control scheme has improved the real power regulation and dynamic performance of a combined wind and ocean wave energy scheme over a wide range of operating conditions. The performance of this control scheme is assessed by comparing it to a traditional proportional-integral based control scheme in a series of case studies representative of maximum power generation. Simulations are carried out using PSCAD/EMTDC software to verify the robustness of the power electronics converters and the efficiency of the proposed controller under steady state and transient conditions.

Suggested Citation

  • Lu, Kai-Hung & Hong, Chih-Ming & Xu, Qiangqiang, 2019. "Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power generation systems," Energy, Elsevier, vol. 170(C), pages 40-52.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:40-52
    DOI: 10.1016/j.energy.2018.12.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218324502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
    2. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    3. Ting-Chia Ou & Kai-Hung Lu & Chiou-Jye Huang, 2017. "Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)," Energies, MDPI, vol. 10(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neshat, Mehdi & Nezhad, Meysam Majidi & Sergiienko, Nataliia Y. & Mirjalili, Seyedali & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser," Energy, Elsevier, vol. 256(C).
    2. Huang Renquan & Tian Jing, 2021. "Wavelet-Based Elman Neural Network with the Modified Differential Evolution Algorithm for Forecasting Foreign Exchange Rates," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 421-439, August.
    3. Yang, Qiangda & Dong, Ning & Zhang, Jie, 2021. "An enhanced adaptive bat algorithm for microgrid energy scheduling," Energy, Elsevier, vol. 232(C).
    4. Zhou, Dengji & Jia, Xingyun & Ma, Shixi & Shao, Tiemin & Huang, Dawen & Hao, Jiarui & Li, Taotao, 2022. "Dynamic simulation of natural gas pipeline network based on interpretable machine learning model," Energy, Elsevier, vol. 253(C).
    5. Abdelhamid Zaidi, 2024. "Utilisation of Deep Learning (DL) and Neural Networks (NN) Algorithms for Energy Power Generation: A Social Network and Bibliometric Analysis (2004-2022)," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 172-183, January.
    6. Kai-Hung Lu & Chih-Ming Hong & Fu-Sheng Cheng, 2022. "Enhanced Dynamic Performance in Hybrid Power System Using a Designed ALTS-PFPNN Controller," Energies, MDPI, vol. 15(21), pages 1-22, November.
    7. Zhaozhi Wang & Shemeng Wu & Kai-Hung Lu, 2022. "Improvement of Stability in an Oscillating Water Column Wave Energy Using an Adaptive Intelligent Controller," Energies, MDPI, vol. 16(1), pages 1-15, December.
    8. Meng Qi & Xin Dai & Bei Zhang & Junjie Li & Bangfan Liu, 2023. "The Evolution and Future Prospects of China’s Wave Energy Policy from the Perspective of Renewable Energy: Facing Problems, Governance Optimization and Effectiveness Logic," Sustainability, MDPI, vol. 15(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    3. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Biying Ren & Xiangdong Sun & Shasha Chen & Huan Liu, 2018. "A Compensation Control Scheme of Voltage Unbalance Using a Combined Three-Phase Inverter in an Islanded Microgrid," Energies, MDPI, vol. 11(9), pages 1-15, September.
    5. Simon Krüner & Christoph M. Hackl, 2022. "Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    6. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    7. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    8. Gao, Qiang & Khan, Salman Saeed & Sergiienko, Nataliia & Ertugrul, Nesimi & Hemer, Mark & Negnevitsky, Michael & Ding, Boyin, 2022. "Assessment of wind and wave power characteristic and potential for hybrid exploration in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
    10. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    11. Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
    12. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    13. Danxiang Wei & Jianzhou Wang & Kailai Ni & Guangyu Tang, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting," Energies, MDPI, vol. 12(18), pages 1-38, September.
    14. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    15. Falko Ebe & Basem Idlbi & David E. Stakic & Shuo Chen & Christoph Kondzialka & Matthias Casel & Gerd Heilscher & Christian Seitl & Roland Bründlinger & Thomas I. Strasser, 2018. "Comparison of Power Hardware-in-the-Loop Approaches for the Testing of Smart Grid Controls," Energies, MDPI, vol. 11(12), pages 1-29, December.
    16. Jalali, Mehdi & Zare, Kazem & Seyedi, Heresh, 2017. "Strategic decision-making of distribution network operator with multi-microgrids considering demand response program," Energy, Elsevier, vol. 141(C), pages 1059-1071.
    17. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    18. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    19. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    20. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:40-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.