IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp440-449.html
   My bibliography  Save this article

Energy and exergy analysis of solar heat driven chiller under wide system boundary conditions

Author

Listed:
  • Petela, Karolina
  • Szlek, Andrzej

Abstract

In the paper, a solar driven ammonia-water chiller is investigated, as one of the systems having potential for reduction of resources depletion. An energy and exergy analysis is proposed for correct diagnostics while designing and operating the cycle. The boundary conditions for the analyses are set in accordance with Professor Szargut's primary instructions. They are however widened to solar collector component. Solar radiation is treated as the driving energy or exergy, respectively. The analyses are supplemented with a sensitivity diagnosis revealing the most significant parameters modifying the efficiency and irreversibilities distribution. According to the findings, design COP of the chiller equals 0.444 while its net exergy efficiency is 0.026. Solar collector component is the most burdened with exergy destruction and loss in the whole cycle.

Suggested Citation

  • Petela, Karolina & Szlek, Andrzej, 2019. "Energy and exergy analysis of solar heat driven chiller under wide system boundary conditions," Energy, Elsevier, vol. 168(C), pages 440-449.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:440-449
    DOI: 10.1016/j.energy.2018.11.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218322795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pons, Michel, 2012. "Exergy analysis of solar collectors, from incident radiation to dissipation," Renewable Energy, Elsevier, vol. 47(C), pages 194-202.
    2. Petela, Karolina & Manfrida, Giampaolo & Szlek, Andrzej, 2017. "Advantages of variable driving temperature in solar absorption chiller," Renewable Energy, Elsevier, vol. 114(PB), pages 716-724.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Xinyu & Liu, Huawei & Pei, Maoqing & Li, Wenzhi & Lin, Jianqing & Liu, Dongxue & Ju, Xing & Xu, Chao, 2023. "Multi-parameter study and genetic algorithm integrated optimization for a nanofluid-based photovoltaic/thermal system," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    2. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.
    3. Toghyani, S. & Afshari, E. & Baniasadi, E. & Shadloo, M.S., 2019. "Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system," Renewable Energy, Elsevier, vol. 141(C), pages 1013-1025.
    4. Kheir Abadi, Majid & Davoodi, Vajihe & Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir, 2023. "Determining the best scenario for providing electrical, cooling, and hot water consuming of a building with utilizing a novel wind/solar-based hybrid system," Energy, Elsevier, vol. 273(C).
    5. Arabkoohsar, A. & Andresen, G.B., 2019. "Design and optimization of a novel system for trigeneration," Energy, Elsevier, vol. 168(C), pages 247-260.
    6. Sonja Kallio & Monica Siroux, 2023. "Exergy and Exergy-Economic Approach to Evaluate Hybrid Renewable Energy Systems in Buildings," Energies, MDPI, vol. 16(3), pages 1-22, January.
    7. Eduardo Rodríguez & José M. Cardemil & Allan R. Starke & Rodrigo Escobar, 2022. "Modelling the Exergy of Solar Radiation: A Review," Energies, MDPI, vol. 15(4), pages 1-26, February.
    8. Prakash, J. & Siva, E.P. & Tripathi, D. & Kuharat, S. & Bég, O. Anwar, 2019. "Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump," Renewable Energy, Elsevier, vol. 133(C), pages 1308-1326.
    9. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:440-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.