High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.08.064
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Andrew Whitmore & Anurag Agarwal & Li Xu, 2015. "The Internet of Things—A survey of topics and trends," Information Systems Frontiers, Springer, vol. 17(2), pages 261-274, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ko, Jinyoung & Cheon, Seong-Yong & Kang, Yong-Kwon & Jeong, Jae-Weon, 2022. "Design of a thermoelectric generator-assisted energy harvesting block considering melting temperature of phase change materials," Renewable Energy, Elsevier, vol. 193(C), pages 89-112.
- Lineykin, Simon & Sitbon, Moshe & Kuperman, Alon, 2021. "Design and optimization of low-temperature gradient thermoelectric harvester for wireless sensor network node on water pipelines," Applied Energy, Elsevier, vol. 283(C).
- Daniel Sanin-Villa, 2022. "Recent Developments in Thermoelectric Generation: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
- Thi Kim Tuoi, Truong & Van Toan, Nguyen & Ono, Takahito, 2022. "Self-powered wireless sensing system driven by daily ambient temperature energy harvesting," Applied Energy, Elsevier, vol. 311(C).
- Rui Quan & Tao Li & Yousheng Yue & Yufang Chang & Baohua Tan, 2020. "Experimental Study on a Thermoelectric Generator for Industrial Waste Heat Recovery Based on a Hexagonal Heat Exchanger," Energies, MDPI, vol. 13(12), pages 1-14, June.
- Irene Cappelli & Stefano Parrino & Alessandro Pozzebon & Alessio Salta, 2021. "Providing Energy Self-Sufficiency to LoRaWAN Nodes by Means of Thermoelectric Generators (TEGs)-Based Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-17, November.
- Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
- Ashraf Virk, Mati-ur-Rasool & Mysorewala, Muhammad Faizan & Cheded, Lahouari & Aliyu, AbdulRahman, 2022. "Review of energy harvesting techniques in wireless sensor-based pipeline monitoring networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Giacomo Peruzzi & Alessandro Pozzebon, 2020. "A Review of Energy Harvesting Techniques for Low Power Wide Area Networks (LPWANs)," Energies, MDPI, vol. 13(13), pages 1-24, July.
- Joung, Jaewon & Cheon, Seong-Yong & Kang, Yong-Kwon & Kim, Minseong & Park, Junseok & Jeong, Jae-Weon, 2023. "Impact of external electric resistance on the power generation in the thermoelectric energy harvesting blocks," Renewable Energy, Elsevier, vol. 212(C), pages 779-791.
- Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).
- Borhani, S.M. & Hosseini, M.J. & Pakrouh, R. & Ranjbar, A.A. & Nourian, A., 2021. "Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite," Renewable Energy, Elsevier, vol. 168(C), pages 1122-1140.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
- Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
- Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
- Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
- Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
- Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
- Oscar Brousse & Charles H. Simpson & Ate Poorthuis & Clare Heaviside, 2024. "Unequal distributions of crowdsourced weather data in England and Wales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Payam Hanafizadeh & Ferdos Hatami Lankarani & Shahrokh Nikou, 2022. "Perspectives on management theory’s application in the internet of things research," Information Systems and e-Business Management, Springer, vol. 20(4), pages 749-787, December.
- Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
- Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Asadi, Shahla & Nilashi, Mehrbakhsh & Iranmanesh, Mohammad & Hyun, Sunghyup Sean & Rezvani, Azadeh, 2022. "Effect of internet of things on manufacturing performance: A hybrid multi-criteria decision-making and neuro-fuzzy approach," Technovation, Elsevier, vol. 118(C).
- Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
- Dameri, Renata Paola & Benevolo, Clara & Veglianti, Eleonora & Li, Yaya, 2019. "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 26-41.
- Lv, Yulin & Gong, Feng & Li, Hao & Zhou, Qiang & Wu, Xinlin & Wang, Wenbin & Xiao, Rui, 2020. "A flexible electrokinetic power generator derived from paper and ink for wearable electronics," Applied Energy, Elsevier, vol. 279(C).
- Emilia Ingemarsdotter & Ella Jamsin & Gerd Kortuem & Ruud Balkenende, 2019. "Circular Strategies Enabled by the Internet of Things—A Framework and Analysis of Current Practice," Sustainability, MDPI, vol. 11(20), pages 1-37, October.
- Lei, Yu & Ali, Mazhar & Khan, Imran Ali & Yinling, Wang & Mostafa, Aziz, 2024. "Presenting a model for decentralized operation based on the internet of things in a system multiple microgrids," Energy, Elsevier, vol. 293(C).
- Georgiana-Maria PETRESCU & Anda Larisa ȘTEF & Ioana CÎMPAN & Emil Lucian CRIȘAN & Irina Iulia SALANȚĂ, 2023. "Drivers Of Digital Transformation In Product Development, Business Modeling And Human Resources Management," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 32(1), pages 758-770, July.
- Cranmer, Eleanor E. & Papalexi, M. & tom Dieck, M. Claudia & Bamford, D., 2022. "Internet of Things: Aspiration, implementation and contribution," Journal of Business Research, Elsevier, vol. 139(C), pages 69-80.
- Abhishek Majumdar & Tapas Debnath & Arpita Biswas & Sandeep K. Sood & Krishna Lal Baishnab, 0. "An Energy Efficient e-Healthcare Framework Supported by Novel EO-μGA (Extremal Optimization Tuned Micro-Genetic Algorithm)," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
- Kristoffersen, Eivind & Blomsma, Fenna & Mikalef, Patrick & Li, Jingyue, 2020. "The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies," Journal of Business Research, Elsevier, vol. 120(C), pages 241-261.
More about this item
Keywords
Flexible thermoelectric generators; Energy harvesting; Self-powered; Wireless sensor nodes; Fill factor; Flexible TEG optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:526-533. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.