IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp1139-1157.html
   My bibliography  Save this article

Simultaneous optimization of nonsharp distillation sequences and heat integration networks by simulated annealing algorithm

Author

Listed:
  • Zhang, Shuo
  • Luo, Yiqing
  • Ma, Yingjie
  • Yuan, Xigang

Abstract

Based on stochastic optimization, a new method is proposed to synthesize heat integrated distillation sequences (HIDiSs), which are basic configurations and allow nonsharp splits with at most two middle components. Distillation sequences and heat integration networks are simultaneously optimized to minimize the total annual cost (TAC) of HIDiSs. First, the synthesis problem is formulated as an implicit mixed-integer nonlinear programming problem. Discrete variables are distillation sequences. Continuous variables include operating pressures, key component recoveries and ratios of the actual reflux ratios to the minimum reflux ratios in columns. Next, solution strategies are presented, including representing distillation sequences through a novel encoding method, randomly generating neighboring distillation sequences, automatically determining heat integration networks by the pinch method, and calculating the TAC based on shortcut design of columns. Then, the optimization problem is solved by an improved simulated annealing algorithm. Finally, correctness verification for the method is made in two case studies. The optimization algorithm is proved to be computationally efficient and capable to obtain high-quality optimal solution. The results demonstrate that heat integration between columns significantly reduces the energy consumption compared to the non-integrated distillation sequences. Moreover, nonsharp HIDiSs can further reduce the TAC compared to those with only sharp splits.

Suggested Citation

  • Zhang, Shuo & Luo, Yiqing & Ma, Yingjie & Yuan, Xigang, 2018. "Simultaneous optimization of nonsharp distillation sequences and heat integration networks by simulated annealing algorithm," Energy, Elsevier, vol. 162(C), pages 1139-1157.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1139-1157
    DOI: 10.1016/j.energy.2018.08.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lashkajani, Kazem Hasanzadeh & Ghorbani, Bahram & Amidpour, Majid & Hamedi, Mohammad-Hossein, 2016. "Superstructure optimization of the olefin separation system by harmony search and genetic algorithms," Energy, Elsevier, vol. 99(C), pages 288-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sardarmehni, Mojtaba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Benchmarking of olefin plant cold-end for shaft work consumption, using process integration concepts," Energy, Elsevier, vol. 127(C), pages 623-633.
    2. Ghorbani, Bahram & Mahyari, Kimiya Borzoo & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2020. "Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery," Renewable Energy, Elsevier, vol. 148(C), pages 1227-1243.
    3. Ghorbani, Bahram & Hamedi, Mohammad-Hossein & Amidpour, Majid & Mehrpooya, Mehdi, 2016. "Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU))," Energy, Elsevier, vol. 115(P1), pages 88-106.
    4. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2018. "Solving the dynamic economic dispatch by a memory-based global differential evolution and a repair technique of constraint handling," Energy, Elsevier, vol. 147(C), pages 59-80.
    5. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Mafi, Mostafa, 2018. "Applying an integrated trigeneration incorporating hybrid energy systems for natural gas liquefaction," Energy, Elsevier, vol. 149(C), pages 848-864.
    6. Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.
    7. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.
    8. Rastgou, Abdollah & Moshtagh, Jamal & Bahramara, Salah, 2018. "Improved harmony search algorithm for electrical distribution network expansion planning in the presence of distributed generators," Energy, Elsevier, vol. 151(C), pages 178-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1139-1157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.