IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp1224-1235.html
   My bibliography  Save this article

Aero engine compressor cooling by water injection - Part 1: Evaporative compressor model

Author

Listed:
  • Novelo, David Alejandro Block
  • Igie, Uyioghosa

Abstract

The need for more fuel-efficient turbofan engines has led to a rise in compressor pressure ratio and turbine inlet temperature respectively. The latter has been possible with advancements in turbine blade technology. Nevertheless, this higher temperature during combustion increases the production of thermal Nitrogen Oxides. Contrary to this high-pressure, high-temperature aero-engine design trend, regulations are pushing towards capping or reducing emissions. Injecting atomised water into a jet engine is an alternative to mitigate Nitrogen Oxides that is applied extensively to stationary gas turbines. The application for jet engines is very limited and dates back to the early Boeing 707 and 747 for thrust augmentation. The focus of this study is to investigate the performance benefits of water injection when applied to 2 and 3-spool compressors, under a wide range of different environmental conditions, and for different injection properties. In this first paper, a thermo-analytical compressor model with water droplet investigations in the Lagrangian frame of reference is explored. The methodology is applied to two different engine architectures, representative of modern turbofan engines. This water injection study focuses on cooling the core and shows that the percent reduction in compressor discharge temperature is promising over a wider range of ambient conditions than expected. The effect of droplet sizes or quantity utilised were seen to be more influential. The 3-spool compressor also appears to benefit more from water injection, mainly due to the higher operating pressures and temperatures found on the Intermediate Pressure Compressor which enables more efficient evaporation, as compared to a booster compressor. Given the design of this compressor, two locations of injections were considered. Reductions in Compressor Discharge Temperature of 60 and 80 K were seen for the 2 and 3-spool engines, for a 2% injection ratio, accompanied by reductions in specific compressor work of 16 and 17%. Part 2 of this study has considered boundary conditions obtained here, to investigate the performance and emissions of complete jet engines.

Suggested Citation

  • Novelo, David Alejandro Block & Igie, Uyioghosa, 2018. "Aero engine compressor cooling by water injection - Part 1: Evaporative compressor model," Energy, Elsevier, vol. 160(C), pages 1224-1235.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:1224-1235
    DOI: 10.1016/j.energy.2018.05.170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218310144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Block Novelo, David Alejandro & Igie, Uyioghosa, 2018. "Aero engine compressor cooling by water injection - Part 2: Performance and emission reductions," Energy, Elsevier, vol. 160(C), pages 1236-1243.
    2. Lv, Chengkun & Xu, Haiqi & Chang, Juntao & Wang, Youyin & Chen, Ruoyu & Yu, Daren, 2022. "Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor," Energy, Elsevier, vol. 261(PB).
    3. Block Novelo, David Alejandro & Igie, Uyioghosa & Prakash, Vinod & SzymaƄski, Artur, 2019. "Experimental investigation of gas turbine compressor water injection for NOx emission reductions," Energy, Elsevier, vol. 176(C), pages 235-248.
    4. Pan Zhang & Xiwei Ke & Weiliang Wang & Xueyu Tang & Junfu Lyu & Qinghong Tang, 2023. "Study on the Selection of Single-Screw Steam Compressors in Industrial Steam Supply," Energies, MDPI, vol. 16(10), pages 1-15, May.
    5. Lv, Chengkun & Lan, Zhu & Wang, Ziao & Chang, Juntao & Yu, Daren, 2024. "Intelligent ammonia precooling control for TBCC mode transition based on neural network improved equilibrium manifold expansion model," Energy, Elsevier, vol. 288(C).
    6. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:1224-1235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.