IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v15y1990i11p979-985.html
   My bibliography  Save this article

Finite-time optimizations of a heat engine

Author

Listed:
  • Lee, Won Y.
  • Kim, Sang S.
  • Won, Seung H.

Abstract

We study the power and efficiency of a finite-time heat engine. We consider an endoreversible Carnot heat engine coupled to heating and cooling fluids and determine the maximum power output and efficiency to obtain a bound on the power-conversion systems. While the maximum power and the operating temperatures of the heat engine are functions of the heat-reservoir temperatures, heat-reservoir capacity rates and heat-transfer rates, the efficiency at maximum power depends primarily on the initial temperatures of the heating and cooling fluids. The efficiency at maximum power provides a measure of the power available in a practical heat engine.

Suggested Citation

  • Lee, Won Y. & Kim, Sang S. & Won, Seung H., 1990. "Finite-time optimizations of a heat engine," Energy, Elsevier, vol. 15(11), pages 979-985.
  • Handle: RePEc:eee:energy:v:15:y:1990:i:11:p:979-985
    DOI: 10.1016/0360-5442(90)90023-U
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429090023U
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(90)90023-U?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
    2. Khaliq, Abdul & Kumar, Rajesh, 2005. "Finite-time heat-transfer analysis and ecological optimization of an endoreversible and regenerative gas-turbine power-cycle," Applied Energy, Elsevier, vol. 81(1), pages 73-84, May.
    3. Khaliq, Abdul, 2004. "Finite-time heat-transfer analysis and generalized power-optimization of an endoreversible Rankine heat-engine," Applied Energy, Elsevier, vol. 79(1), pages 27-40, September.
    4. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    5. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:15:y:1990:i:11:p:979-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.