IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v157y2018icp45-53.html
   My bibliography  Save this article

Experimental study on the effects of co-firing coal mine waste residues with coal in PF swirl burners

Author

Listed:
  • Peña, B.
  • Pallarés, J.
  • Bartolomé, C.
  • Herce, C.

Abstract

Co-firing coal mine discards with coal in pulverized fuel burners of the current power plants would be a promising way both to reduce the environmental impact of coal production and to energy valorize such residues, with an acceptable economic investment. Changes in fuel blends bring along alterations in flame dynamics and structure which must be considered for successful operation. The paper addresses the challenge of co-firing coal mine waste residues of low rank, high ash content and rich in sulfur with bituminous South African coal in a 500 kWth pulverized fuel pilot plant. The effect of fuel blend composition on combustion performance is investigated by means of image processing and through some relevant operation parameters recordered during the tests. Lower brightness, fluctuations and flicker frequency are registered in the flame videos as coal mine waste residues are added. Nonetheless, the experimental tests confirmed the viability of the process with acceptable levels of carbon monoxide and nitrogen oxides, very stable chamber pressure and gases temperature. The present work also shows the usefulness of visualization systems for detecting and characterizing dynamical instabilities associated with changes in flame structure and certain flame features could be used as inputs in monitoring systems or predictive control.

Suggested Citation

  • Peña, B. & Pallarés, J. & Bartolomé, C. & Herce, C., 2018. "Experimental study on the effects of co-firing coal mine waste residues with coal in PF swirl burners," Energy, Elsevier, vol. 157(C), pages 45-53.
  • Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:45-53
    DOI: 10.1016/j.energy.2018.05.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pallarés, Javier & Herce, Carlos & Bartolomé, Carmen & Peña, Begoña, 2017. "Investigation on co-firing of coal mine waste residues in pulverized coal combustion systems," Energy, Elsevier, vol. 140(P1), pages 58-68.
    2. González-Cencerrado, A. & Peña, B. & Gil, A., 2012. "Coal flame characterization by means of digital image processing in a semi-industrial scale PF swirl burner," Applied Energy, Elsevier, vol. 94(C), pages 375-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Joanna Wichłacz, 2019. "The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner," Energies, MDPI, vol. 12(7), pages 1-12, April.
    2. Chen, Bin & Ye, Xiao & Shen, Jun & Wang, Sha & Deng, Shengxiang & Yang, Jinbiao, 2021. "Investigations on the energy efficiency limits for industrial boiler operation and technical requirements—taking China’s Hunan province as an example," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    2. Bi, Haobo & Wang, Chengxin & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong & Bao, Lin, 2020. "Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR," Energy, Elsevier, vol. 213(C).
    3. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    4. Pallarés, Javier & Herce, Carlos & Bartolomé, Carmen & Peña, Begoña, 2017. "Investigation on co-firing of coal mine waste residues in pulverized coal combustion systems," Energy, Elsevier, vol. 140(P1), pages 58-68.
    5. Liang Song & Shanjun Liu & Wenwen Li, 2019. "Quantitative Inversion of Fixed Carbon Content in Coal Gangue by Thermal Infrared Spectral Data," Energies, MDPI, vol. 12(9), pages 1-17, May.
    6. Hao, Runlong & Zhang, Zili & Zeng, Qinda & Mao, Yumin & He, Hongzhou & Mao, Xingzhou & Yang, Fan & Zhao, Yi, 2018. "Synergistic behaviors of anthracite and dried sawdust sludge during their co-combustion: Conversion ratio, micromorphology variation and constituents evolutions," Energy, Elsevier, vol. 153(C), pages 776-787.
    7. Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
    8. Chen, Junghui & Chan, Lester Lik Teck & Cheng, Yi-Cheng, 2013. "Gaussian process regression based optimal design of combustion systems using flame images," Applied Energy, Elsevier, vol. 111(C), pages 153-160.
    9. Mlonka-Mędrala, Agata & Dziok, Tadeusz & Magdziarz, Aneta & Nowak, Wojciech, 2021. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal," Energy, Elsevier, vol. 234(C).
    10. Zhongya Xi & Zhongguang Fu & Syed Waqas Sabir & Xiaotian Hu & Yibo Jiang & Tao Zhang, 2018. "Experimental Analysis on Flame Flickering of a Swirl Partially Premixed Combustion," Energies, MDPI, vol. 11(9), pages 1-14, September.
    11. Ögren, Yngve & Tóth, Pál & Garami, Attila & Sepman, Alexey & Wiinikka, Henrik, 2018. "Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors," Applied Energy, Elsevier, vol. 226(C), pages 450-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:157:y:2018:i:c:p:45-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.