IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp647-660.html
   My bibliography  Save this article

Maximum income resulting from energy arbitrage by battery systems subject to cycle aging and price uncertainty from a dynamic programming perspective

Author

Listed:
  • Díaz, Guzmán
  • Gómez-Aleixandre, Javier
  • Coto, José
  • Conejero, Olga

Abstract

This paper describes an approach to compute the maximum value of energy storage systems (ESS) in grid applications under uncertain energy prices. The value obtained is based on an optimal operation (consisting of charge/discharge sequences) of the ESS. In other words, it is the maximum value that may be obtained when the ESS charge/discharge sequence is adapted to the expected operational conditions.

Suggested Citation

  • Díaz, Guzmán & Gómez-Aleixandre, Javier & Coto, José & Conejero, Olga, 2018. "Maximum income resulting from energy arbitrage by battery systems subject to cycle aging and price uncertainty from a dynamic programming perspective," Energy, Elsevier, vol. 156(C), pages 647-660.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:647-660
    DOI: 10.1016/j.energy.2018.05.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Optimal operation value of combined wind power and energy storage in multi-stage electricity markets," Applied Energy, Elsevier, vol. 235(C), pages 1153-1168.
    2. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2021. "Robust design optimization of a photovoltaic-battery-heat pump system with thermal storage under aleatory and epistemic uncertainty," Energy, Elsevier, vol. 229(C).
    3. Zhang, Yuanjian & Chu, Liang & Fu, Zicheng & Xu, Nan & Guo, Chong & Zhao, Di & Ou, Yang & Xu, Lei, 2020. "Energy management strategy for plug-in hybrid electric vehicle integrated with vehicle-environment cooperation control," Energy, Elsevier, vol. 197(C).
    4. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Zhang, Lizhi & Kuang, Jiyuan & Sun, Bo & Li, Fan & Zhang, Chenghui, 2020. "A two-stage operation optimization method of integrated energy systems with demand response and energy storage," Energy, Elsevier, vol. 208(C).
    6. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    7. Wu, Yaling & Liu, Zhongbing & Li, Benjia & Liu, Jiangyang & Zhang, Ling, 2022. "Energy management strategy and optimal battery capacity for flexible PV-battery system under time-of-use tariff," Renewable Energy, Elsevier, vol. 200(C), pages 558-570.
    8. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2020. "Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage," Energy, Elsevier, vol. 213(C).
    9. Sepúlveda-Mora, Sergio B. & Hegedus, Steven, 2021. "Making the case for time-of-use electric rates to boost the value of battery storage in commercial buildings with grid connected PV systems," Energy, Elsevier, vol. 218(C).
    10. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:647-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.