IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp112-122.html
   My bibliography  Save this article

A dimensionally reduced order piezoelectric energy harvester model

Author

Listed:
  • Banerjee, Shreya
  • Roy, Sitikantha

Abstract

Presently reduced power requirement for small electronic components have been the main motivation for developing vibration based energy harvesting. The ultimate objective in this research field is to provide an easy, sustainable and efficient technology to power such small electronic devices from the unused vibrational energy available in the environment. A comprehensive, reliable mathematical technique is thus in high demand which can model a piezoelectric energy harvester, predict its coupled dynamics (structural and electromechanical) accurately. The present work focuses on developing a mathematical model for a slender, piezoelectric energy harvester based on Variational Asymptotic Method, a dimensional reduction methodology. Variational Asymptotic Method approximates the 3D electromechanical enthalpy as an asymptotic series to formulate an equivalent 1D electromechanical enthalpy functional to perform a systematic dimensional reduction. For validation purpose, we have picked up experimental results for a bimorph PZT harvester, available in the literature. We have studied the extension-bending structural coupling along with the parameter dependence of the voltage, power output from the harvester and validated with the experiments. The present study provides a unique, accurate modeling technique which is capable of capturing material anisotropy, structural coupling and can analyse arbitrary cross section, surface mounted as well as embedded piezo layered energy harvester.

Suggested Citation

  • Banerjee, Shreya & Roy, Sitikantha, 2018. "A dimensionally reduced order piezoelectric energy harvester model," Energy, Elsevier, vol. 148(C), pages 112-122.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:112-122
    DOI: 10.1016/j.energy.2018.01.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azizi, Saber & Ghodsi, Ali & Jafari, Hamid & Ghazavi, Mohammad Reza, 2016. "A conceptual study on the dynamics of a piezoelectric MEMS (Micro Electro Mechanical System) energy harvester," Energy, Elsevier, vol. 96(C), pages 495-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madinei, H. & Haddad Khodaparast, H. & Friswell, M.I. & Adhikari, S., 2018. "Minimising the effects of manufacturing uncertainties in MEMS Energy harvesters," Energy, Elsevier, vol. 149(C), pages 990-999.
    2. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
    3. Jafari, Hamid & Ghodsi, Ali & Azizi, Saber & Ghazavi, Mohammad Reza, 2017. "Energy harvesting based on magnetostriction, for low frequency excitations," Energy, Elsevier, vol. 124(C), pages 1-8.
    4. Qi, Lu, 2019. "Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters," Energy, Elsevier, vol. 171(C), pages 721-730.
    5. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    6. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    7. Kan, Junwu & Zhang, Li & Wang, Shuyun & Lin, Shijie & Yang, Zemeng & Meng, Fanxu & Zhang, Zhonghua, 2023. "Design and characterization of a self-excited unibody piezoelectric energy harvester by utilizing rotationally induced pendulation of along-groove iron balls," Energy, Elsevier, vol. 285(C).
    8. Hao, Guannan & Dong, Xiangwei & Li, Zengliang, 2021. "A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies," Energy, Elsevier, vol. 232(C).
    9. Kan, Junwu & Fu, Jiawei & Wang, Shuyun & Zhang, Zhonghua & Chen, Song & Yang, Can, 2017. "Study on a piezo-disk energy harvester excited by rotary magnets," Energy, Elsevier, vol. 122(C), pages 62-69.
    10. Hassen M. Ouakad, 2023. "Vibration-Based Energy Harvesters: New Ways to Scavenge Energy," Energies, MDPI, vol. 16(13), pages 1-3, June.
    11. Ghavami, Mahyar & Azizi, Saber & Ghazavi, Mohammad Reza, 2018. "On the dynamics of a capacitive electret-based micro-cantilever for energy harvesting," Energy, Elsevier, vol. 153(C), pages 967-976.
    12. Yang, Feng & Du, Lin & Chen, Weigen & Li, Jian & Wang, Youyuan & Wang, Disheng, 2017. "Hybrid energy harvesting for condition monitoring sensors in power grids," Energy, Elsevier, vol. 118(C), pages 435-445.
    13. Rojas, E.F. & Faroughi, S. & Abdelkefi, A. & Park, Y.H., 2021. "Investigations on the performance of piezoelectric-flexoelectric energy harvesters," Applied Energy, Elsevier, vol. 288(C).
    14. Emmanuel Mbondo Binyet & Jen-Yuan Chang & Chih-Yung Huang, 2020. "Flexible Plate in the Wake of a Square Cylinder for Piezoelectric Energy Harvesting—Parametric Study Using Fluid–Structure Interaction Modeling," Energies, MDPI, vol. 13(10), pages 1-29, May.
    15. Wang, K.F. & Wang, B.L., 2018. "Energy gathering performance of micro/nanoscale circular energy harvesters based on flexoelectric effect," Energy, Elsevier, vol. 149(C), pages 597-606.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:112-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.