IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp965-979.html
   My bibliography  Save this article

Analysis of the impact of technical and economic parameters on the specific cost of electricity production

Author

Listed:
  • Bartnik, Ryszard
  • Hnydiuk-Stefan, Anna
  • Buryn, Zbigniew

Abstract

This paper reports the results of analysis of technical and economic parameters on the specific cost of electricity production. The use of a particular technology determines the value of the investment needed for the construction of a power plant, its energy efficiency, internal electrical load of the power plant and its annual operating time. Besides, this cost is considerably dependent on the interest rate on the capital, fuel prices and environmental charges as well as, equally importantly, their variability in time. The variability in the prices of energy carriers and their mutual relations are inevitable for a number of reasons. As shown in the paper the change of the technical parameters in the range of the possible boundaries in a particular technology cannot considerably reduce the specific cost of electricity production. The reduction of the current price relation between gas and three-times cheaper coal (calculated per specific unit of energy) can considerably improve the profitability of the use of the gas-steam technology. When the ratio of the cost of fuel in the specific cost of electricity production is small, the impact of the fuel price on its value is also insignificant.

Suggested Citation

  • Bartnik, Ryszard & Hnydiuk-Stefan, Anna & Buryn, Zbigniew, 2018. "Analysis of the impact of technical and economic parameters on the specific cost of electricity production," Energy, Elsevier, vol. 147(C), pages 965-979.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:965-979
    DOI: 10.1016/j.energy.2018.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218300148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajayi, Victor & Weyman-Jones, Thomas & Glass, Anthony, 2017. "Cost efficiency and electricity market structure: A case study of OECD countries," Energy Economics, Elsevier, vol. 65(C), pages 283-291.
    2. Boccard, Nicolas, 2014. "The cost of nuclear electricity: France after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 450-461.
    3. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    4. Geissmann, Thomas, 2017. "A probabilistic approach to the computation of the levelized cost of electricity," Energy, Elsevier, vol. 124(C), pages 372-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryszard Bartnik & Zbigniew Buryn & Anna Hnydiuk-Stefan & Adam Juszczak, 2018. "Methodology and a Continuous Time Mathematical Model for Selecting the Optimum Capacity of a Heat Accumulator Integrated with a CHP Plant," Energies, MDPI, vol. 11(5), pages 1-17, May.
    2. Ryszard Bartnik & Waldemar Skomudek & Zbigniew Buryn & Anna Hnydiuk-Stefan & Aleksandra Otawa, 2018. "Methodology and Continuous Time Mathematical Model to Select Optimum Power of Gas Turbine Set for Dual-Fuel Gas-Steam Combined Heat and Power Plant in Parallel System," Energies, MDPI, vol. 11(7), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prakash, Vrishab & Ghosh, Sajal & Kanjilal, Kakali, 2020. "Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications," Energy, Elsevier, vol. 200(C).
    2. Ruhang Xu & Zhilin Liu & Zhuangzhuang Yu, 2019. "Exploring the Profitability and Efficiency of Variable Renewable Energy in Spot Electricity Market: Uncovering the Locational Price Disadvantages," Energies, MDPI, vol. 12(14), pages 1-30, July.
    3. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    5. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    6. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    7. Xiang Huang & Yapan Qu & Zhentao Zhu & Qiuchi Wu, 2023. "Techno-Economic Analysis of Photovoltaic Hydrogen Production Considering Technological Progress Uncertainty," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    8. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    9. Gaoyuan Xu & Xiaojing Wang, 2022. "Research on the Electricity Market Clearing Model for Renewable Energy," Energies, MDPI, vol. 15(23), pages 1-16, December.
    10. Johnstone, David & Havyatt, David, 2022. "Sophistry and high electricity prices in Australia," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 88(C).
    11. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    12. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    13. Hobley, Alexander, 2019. "Will gas be gone in the United Kingdom (UK) by 2050? An impact assessment of urban heat decarbonisation and low emission vehicle uptake on future UK energy system scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 695-705.
    14. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    15. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    16. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    17. Yi, Yuxin & Zhang, Liming & Du, Lei & Sun, Helin, 2024. "Cross-regional integration of renewable energy and corporate carbon emissions: Evidence from China's cross-regional surplus renewable energy spot trading pilot," Energy Economics, Elsevier, vol. 135(C).
    18. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    19. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    20. Zheng Lu & Yunfei Chen & Qiaoqiao Fan, 2021. "Study on Feasibility of Photovoltaic Power to Grid Parity in China Based on LCOE," Sustainability, MDPI, vol. 13(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:965-979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.