IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp1187-1198.html
   My bibliography  Save this article

Investigation of the effect of aluminum porous fins on heat transfer

Author

Listed:
  • Bilen, K.
  • Gok, S.
  • Olcay, A.B.
  • Solmus, I.

Abstract

In the present study, heat transfer and pressure drop characteristics of aluminum porous fins mounted on a surface in a rectangular channel were studied. Nusselt number, heat transfer enhancement ratio and heat transfer performance for three gap heights over pore fins (C/H = 0, 0.5 and 1) as well as three longitudinal fin pitches (Sx = 116, 126 and 136 mm) were investigated for the range of 5000 < Re < 35000. It was found that use of larger gap height over fins has a significant effect on the Nusselt number while the longitudinal fin pitch has a negligible influence on it. The highest heat enhancement ratio (Nu*) was obtained as 470–660% for the case of C/H = 0 and Sx = 136 mm. Furthermore, the highest heat transfer performance (η) was in the range of 1.7–2.6 for the case of C/H = 1 and Sx = 136 mm. The highest heat enhancement ratio (Nu*) was obtained for C/H = 0 and Sx = 136 mm while the highest heat transfer performance (η) was obtained for C/H = 1 and Sx = 136 mm. In conclusion, the heat transfer performances (η) studied are advantageous for all fin and channel arrangements, since heat transfer performances (η) for all present tests are higher than unity.

Suggested Citation

  • Bilen, K. & Gok, S. & Olcay, A.B. & Solmus, I., 2017. "Investigation of the effect of aluminum porous fins on heat transfer," Energy, Elsevier, vol. 138(C), pages 1187-1198.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:1187-1198
    DOI: 10.1016/j.energy.2017.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217313919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurtbaş, İrfan & Celik, Nevin & Dinçer, İbrahim, 2010. "Exergy transfer in a porous rectangular channel," Energy, Elsevier, vol. 35(1), pages 451-460.
    2. Amori, Karima E. & Laibi, Hussein Alwan, 2011. "Experimental and numerical analysis of electrical metal foam heater," Energy, Elsevier, vol. 36(7), pages 4524-4530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jadhav, Prakash H. & Gnanasekaran, N. & Mobedi, Moghtada, 2023. "Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Monisha & Roy, S. & Basak, Tanmay, 2015. "Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities," Energy, Elsevier, vol. 82(C), pages 1-22.
    2. Zheng, Ying & Cai, Jiu-ju & Dong, Hui & Feng, Jun-sheng & Liu, Jing-yu, 2019. "Experimental investigation of volumetric exergy transfer coefficient in vertical moving bed for sinter waste heat recovery," Energy, Elsevier, vol. 167(C), pages 428-439.
    3. Feng, Jun-sheng & Dong, Hui & Gao, Jian-ye & Liu, Jing-yu & Liang, Kai, 2016. "Exergy transfer characteristics of gas-solid heat transfer through sinter bed layer in vertical tank," Energy, Elsevier, vol. 111(C), pages 154-164.
    4. Amori, Karima E. & Laibi, Hussein Alwan, 2011. "Experimental and numerical analysis of electrical metal foam heater," Energy, Elsevier, vol. 36(7), pages 4524-4530.
    5. Zhiquan Wu & Shaoxiang Zhou & Liansuo An & Guoqing Shen & Hailin Shi, 2011. "Theoretical Foundation for Energy Structure Adjustment," Modern Applied Science, Canadian Center of Science and Education, vol. 5(1), pages 133-133, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:1187-1198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.