Detection of non-technical losses in smart meter data based on load curve profiling and time series analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.07.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ahmad, Tanveer, 2017. "Non-technical loss analysis and prevention using smart meters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 573-589.
- Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
- Smith, Thomas B., 2004. "Electricity theft: a comparative analysis," Energy Policy, Elsevier, vol. 32(18), pages 2067-2076, December.
- Liu, Xiufeng & Nielsen, Per Sieverts, 2016. "A hybrid ICT-solution for smart meter data analytics," Energy, Elsevier, vol. 115(P3), pages 1710-1722.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
- Rongheng Lin & Fangchun Yang & Mingyuan Gao & Budan Wu & Yingying Zhao, 2019. "AUD-MTS: An Abnormal User Detection Approach Based on Power Load Multi-Step Clustering with Multiple Time Scales," Energies, MDPI, vol. 12(16), pages 1-19, August.
- Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Matthew Boeding & Kelly Boswell & Michael Hempel & Hamid Sharif & Juan Lopez & Kalyan Perumalla, 2022. "Survey of Cybersecurity Governance, Threats, and Countermeasures for the Power Grid," Energies, MDPI, vol. 15(22), pages 1-22, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
- Jamil, Faisal & Ahmad, Eatzaz, 2019. "Policy considerations for limiting electricity theft in the developing countries," Energy Policy, Elsevier, vol. 129(C), pages 452-458.
- Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
- Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Babar, Zainab & Jamil, Faisal & Haq, Wajiha, 2022. "Consumer's perception towards electricity theft: A case study of Islamabad and Rawalpindi using a path analysis," Energy Policy, Elsevier, vol. 169(C).
- Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Wabukala, Benard M. & Mukisa, Nicholas & Watundu, Susan & Bergland, Olvar & Rudaheranwa, Nichodemus & Adaramola, Muyiwa S., 2023. "Impact of household electricity theft and unaffordability on electricity security: A case of Uganda," Energy Policy, Elsevier, vol. 173(C).
- Adongo, Charles Atanga & Taale, Francis & Bukari, Shaibu & Suleman, Shafic & Amadu, Iddrisu, 2021. "Electricity theft whistleblowing feasibility in commercial accommodation facilities," Energy Policy, Elsevier, vol. 155(C).
- Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
- Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
- Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017.
"CO2 content of electricity losses,"
Energy Policy, Elsevier, vol. 104(C), pages 439-445.
- Daniel Daví Arderius & María-Eugenia Sanin & Elisa Trujillo-Baute, 2016. "CO2 Content of Electricity Losses," Documents de recherche 16-08, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Daniel Daví-Arderius & María-Eugenia Sanin & Elisa Trujillo-Baute, 2016. "Co2 content of electricity losses," Working Papers 2016/23, Institut d'Economia de Barcelona (IEB).
- Daniel Davi-Arderius & Maria-Eugenia Sanin & Elisa Trujillo-Baute, 2017. "CO2 content of electricity losses," Post-Print hal-02878048, HAL.
- Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018.
"The economic impact of electricity losses,"
Energy Economics, Elsevier, vol. 75(C), pages 309-322.
- Maria Teresa Costa-Campi & Daniel Daví-Arderius & Elisa Trujillo-Baute, 2016. "The economic impact of electricity losses," Working Papers 2016/4, Institut d'Economia de Barcelona (IEB).
- Netzah Calamaro & Yuval Beck & Ran Ben Melech & Doron Shmilovitz, 2021. "An Energy-Fraud Detection-System Capable of Distinguishing Frauds from Other Energy Flow Anomalies in an Urban Environment," Sustainability, MDPI, vol. 13(19), pages 1-38, September.
- Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
- Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
- Min, Brian & Golden, Miriam, 2014. "Electoral cycles in electricity losses in India," Energy Policy, Elsevier, vol. 65(C), pages 619-625.
- Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
- Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
More about this item
Keywords
Smart grids; Smart meter data; Non-technical losses; Outlier detection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:118-128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.