IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp1119-1129.html
   My bibliography  Save this article

Waste to energy plant operation under the influence of market and legislation conditioned changes

Author

Listed:
  • Tomić, Tihomir
  • Dominković, Dominik Franjo
  • Pfeifer, Antun
  • Schneider, Daniel Rolph
  • Pedersen, Allan Schrøder
  • Duić, Neven

Abstract

In this paper, gate-fee changes of the waste-to-energy plants are investigated in the conditions set by European Union legislation and by the introduction of the new heat market. Waste management and sustainable energy supply are core issues of sustainable development of regions, especially urban areas. These two energy flows logically come together in the combined heat and power facility by waste incineration. However, the implementation of new legislation influences quantity and quality of municipal waste and operation of waste-to-energy systems. Once the legislation requirements are met, waste-to-energy plants need to be adapted to market operation. This influence is tracked by the gate-fee volatility. The operation of the waste-to-energy plant on electricity markets is simulated by using EnergyPLAN and heat market is simulated in Matlab, based on hourly marginal costs. The results have shown that the fuel switch reduced gate-fee and made the facility economically viable again. In the second case, the operation of the waste-to-energy plant on day-ahead electricity and heat market is analysed. It is shown that introducing heat market increased needed gate-fee on the yearly level over the expected levels. Therefore, it can be concluded that the proposed approach can make projects of otherwise questionable feasibility more attractive.

Suggested Citation

  • Tomić, Tihomir & Dominković, Dominik Franjo & Pfeifer, Antun & Schneider, Daniel Rolph & Pedersen, Allan Schrøder & Duić, Neven, 2017. "Waste to energy plant operation under the influence of market and legislation conditioned changes," Energy, Elsevier, vol. 137(C), pages 1119-1129.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1119-1129
    DOI: 10.1016/j.energy.2017.04.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ćosić, Boris & Stanić, Zoran & Duić, Neven, 2011. "Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: Case study Croatia," Energy, Elsevier, vol. 36(4), pages 2017-2028.
    2. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    3. Ichinose, Daisuke & Yamamoto, Masashi & Yoshida, Yuichiro, 2015. "The decoupling of and affluence discharge under spatial correlation: do richer communities discharge more waste? – CORRIGENDUM," Environment and Development Economics, Cambridge University Press, vol. 20(2), pages 282-282, April.
    4. Ichinose, Daisuke & Yamamoto, Masashi & Yoshida, Yuichiro, 2015. "The decoupling of affluence and waste discharge under spatial correlation: Do richer communities discharge more waste?," Environment and Development Economics, Cambridge University Press, vol. 20(2), pages 161-184, April.
    5. Stennikov, Valery A. & Iakimetc, Ekaterina E., 2016. "Optimal planning of heat supply systems in urban areas," Energy, Elsevier, vol. 110(C), pages 157-165.
    6. Persson, Urban & Münster, Marie, 2016. "Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review," Energy, Elsevier, vol. 110(C), pages 116-128.
    7. Auer, Hans & Haas, Reinhard, 2016. "On integrating large shares of variable renewables into the electricity system," Energy, Elsevier, vol. 115(P3), pages 1592-1601.
    8. Kalina, Jacek, 2016. "Complex thermal energy conversion systems for efficient use of locally available biomass," Energy, Elsevier, vol. 110(C), pages 105-115.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    10. Persson, U. & Möller, B. & Werner, S., 2014. "Heat Roadmap Europe: Identifying strategic heat synergy regions," Energy Policy, Elsevier, vol. 74(C), pages 663-681.
    11. Kirkerud, Jon Gustav & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2016. "Impacts of electricity grid tariffs on flexible use of electricity to heat generation," Energy, Elsevier, vol. 115(P3), pages 1679-1687.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    3. Kůdela, Jakub & Smejkalová, Veronika & Šomplák, Radovan & Nevrlý, Vlastimír, 2020. "Legislation-induced planning of waste processing infrastructure: A case study of the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. F, Feijoo & A, Pfeifer & L, Herc & D, Groppi & N, Duić, 2022. "A long-term capacity investment and operational energy planning model with power-to-X and flexibility technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Dominković, D.F. & Dobravec, V. & Jiang, Y. & Nielsen, P.S. & Krajačić, G., 2018. "Modelling smart energy systems in tropical regions," Energy, Elsevier, vol. 155(C), pages 592-609.
    6. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    7. Šomplák, Radovan & Nevrlý, Vlastimír & Smejkalová, Veronika & Šmídová, Zlata & Pavlas, Martin, 2019. "Bulky waste for energy recovery: Analysis of spatial distribution," Energy, Elsevier, vol. 181(C), pages 827-839.
    8. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
    9. Rezaei, Mahdi & Ghobadian, Barat & Samadi, Seyed Hashem & Karimi, Samira, 2018. "Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran," Energy, Elsevier, vol. 152(C), pages 46-56.
    10. Nami, H. & Arabkoohsar, A., 2019. "Improving the power share of waste-driven CHP plants via parallelization with a small-scale Rankine cycle, a thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 27-36.
    11. Hrabec, Dušan & Šomplák, Radovan & Nevrlý, Vlastimír & Viktorin, Adam & Pluháček, Michal & Popela, Pavel, 2020. "Sustainable waste-to-energy facility location: Influence of demand on energy sales," Energy, Elsevier, vol. 207(C).
    12. Pfeifer, Antun & Krajačić, Goran & Ljubas, Davor & Duić, Neven, 2019. "Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system – Economic and environmental implications," Renewable Energy, Elsevier, vol. 143(C), pages 1310-1317.
    13. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    14. Dominković, Dominik Franjo & Wahlroos, Mikko & Syri, Sanna & Pedersen, Allan Schrøder, 2018. "Influence of different technologies on dynamic pricing in district heating systems: Comparative case studies," Energy, Elsevier, vol. 153(C), pages 136-148.
    15. Hu, Chenlian & Liu, Xiao & Lu, Jie & Wang, Chi-Hwa, 2020. "Distributionally robust optimization for power trading of waste-to-energy plants under uncertainty," Applied Energy, Elsevier, vol. 276(C).
    16. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    17. Krzysztof J. Wołosz & Krzysztof Urbaniec & Neven Duić, 2021. "Sustainable Development of Energy, Water and Environment Systems (SDEWES)," Sustainability, MDPI, vol. 13(9), pages 1-7, April.
    18. Dominković, Dominik Franjo & Stunjek, Goran & Blanco, Ignacio & Madsen, Henrik & Krajačić, Goran, 2020. "Technical, economic and environmental optimization of district heating expansion in an urban agglomeration," Energy, Elsevier, vol. 197(C).
    19. Radovan Šomplák & Veronika Smejkalová & Martin Rosecký & Lenka Szásziová & Vlastimír Nevrlý & Dušan Hrabec & Martin Pavlas, 2023. "Comprehensive Review on Waste Generation Modeling," Sustainability, MDPI, vol. 15(4), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    2. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    3. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
    4. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    5. Leurent, Martin & Da Costa, Pascal & Jasserand, Frédéric & Rämä, Miika & Persson, Urban, 2018. "Cost and climate savings through nuclear district heating in a French urban area," Energy Policy, Elsevier, vol. 115(C), pages 616-630.
    6. Manz, Pia & Billerbeck, Anna & Kök, Ali & Fallahnejad, Mostafa & Fleiter, Tobias & Kranzl, Lukas & Braungardt, Sibylle & Eichhammer, Wolfgang, 2024. "Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe," Renewable Energy, Elsevier, vol. 224(C).
    7. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    8. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    9. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    10. Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
    11. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    12. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    13. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    14. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    15. Tobias Erhardt, 2019. "Garbage In and Garbage Out? On Waste Havens in Switzerland," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 251-282, May.
    16. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    17. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    18. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    19. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    20. D'Amato, Alessio & Mazzanti, Massimiliano & Nicolli, Francesco & Zoli, Mariangela, 2018. "Illegal waste disposal: Enforcement actions and decentralized environmental policy," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 56-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1119-1129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.