IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v134y2017icp1-9.html
   My bibliography  Save this article

Experimental investigation on overall performance of a millimeter-scale radial turbine for micro gas turbine

Author

Listed:
  • Fu, Lei
  • Feng, Zhenping
  • Li, Guojun

Abstract

As a major component and work unit of micro gas turbine, the performance of micro turbine directly determines the realizability of micro gas turbine. In order to explore the feasibility, to obtain the performance, and to verify the design results of a micro radial turbine, this paper mainly presents the investigation on overall performance of a micro radial turbine with 10 mm diameter for 50W-class micro gas turbine by the cold model test. Firstly, the aerodynamic performance test platform for high speed micro radial turbine was exhibited. Then, the feasibility and overall performance test of micro radial turbine was carried out. At present, the rotational speed of micro radial turbine has achieved at 359,900 rpm by using hydrostatic gas bearing, which is approximately 80% rotational speed of the design point in cold model test. Thirdly, based on the experimental data and numerical simulation, the operating performance and overall performance of the micro gas turbine were analyzed and discussed in details. The final results indicate that the feasibility of the millimeter-scale micro radial turbine with 10 mm diameter has partly been proven at present level and the micro radial turbine system need to be further improved. These works not only obtain the some valuable experimental data, but also accumulate experience of micro radial turbine design. And this paper not only exhibits the test and design results as engineering reference, but also presents the operation problems and its potential solutions of ultra-high rotational speed experiment and performance test of a micro radial turbine.

Suggested Citation

  • Fu, Lei & Feng, Zhenping & Li, Guojun, 2017. "Experimental investigation on overall performance of a millimeter-scale radial turbine for micro gas turbine," Energy, Elsevier, vol. 134(C), pages 1-9.
  • Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:1-9
    DOI: 10.1016/j.energy.2017.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217309994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung-Bo Sim & Se-Jin Yook & Young Won Kim, 2023. "Development of 180 kW Organic Rankine Cycle (ORC) with a High-Efficiency Two-Stage Axial Turbine," Energies, MDPI, vol. 16(20), pages 1-20, October.
    2. Wenjiao Qi & Qinghua Deng & Zhinan Chi & Lehao Hu & Qi Yuan & Zhenping Feng, 2019. "Influence of Disc Tip Geometry on the Aerodynamic Performance and Flow Characteristics of Multichannel Tesla Turbines," Energies, MDPI, vol. 12(3), pages 1-23, February.
    3. Włodarski, Wojciech, 2018. "Experimental investigations and simulations of the microturbine unit with permanent magnet generator," Energy, Elsevier, vol. 158(C), pages 59-71.
    4. Wenjiao Qi & Qinghua Deng & Yu Jiang & Qi Yuan & Zhenping Feng, 2018. "Disc Thickness and Spacing Distance Impacts on Flow Characteristics of Multichannel Tesla Turbines," Energies, MDPI, vol. 12(1), pages 1-25, December.
    5. Khalil, Khalil M. & Mahmoud, S. & Al- Dadah, R.K., 2020. "Experimental and numerical investigation of blade height effects on micro-scale axial turbines performance using compressed air open cycle," Energy, Elsevier, vol. 211(C).
    6. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    7. Wang, Xing & Zhang, Xuehui & Zhu, Yangli & Zhang, Xinjing & Li, Wen & Chen, Haisheng, 2019. "Effect of blade tip leakage flow on erosion of a radial inflow turbine for compressed air energy storage system," Energy, Elsevier, vol. 178(C), pages 195-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.