IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp998-1012.html
   My bibliography  Save this article

Computational modeling of a BIPV/T ethylene tetrafluoroethylen (ETFE) cushion structure roof

Author

Listed:
  • Abdolzadeh, Morteza
  • Sadeqkhani, Mohsen
  • Ahmadi, Alireza

Abstract

Building integrated ETFE foils are used as the absorbing structure in the solar energy targeted applications. These foils as a building transparent material have been drawing much more attention for the past decades. In addition, integration of amorphous photovoltaic cells with these ETFE foils is taken into account due to the low production cost and its resistance to high operating temperatures. In the present study, a Building integrated Photovoltaic thermal (BIPV/T) ETFE cushion roof was numerically modeled and the thermal and electrical performances of this system were obtained in two cases: the cushion with the steady state mass flow and the cushion with the air pressure regulator system. Verification of the modeling was performed by comparing the model's results with the available experimental data in the literature. The main strength of the present modeling is consideration of the air pressure regulator system in the modeling process which has not been studied yet. The result of the present study showed that the present model predicts the BIPV/T ETFE cushion performance with a reasonable accuracy and can predict the system performance under different operating conditions. The results also showed that in case of the cushion with the steady state mass flow, the power generation is 15% higher than that of the cushion with the pressure regulator system. However, the cushion with the steady state mass flow has a low net output generated power due to the high consumed power of the blower.

Suggested Citation

  • Abdolzadeh, Morteza & Sadeqkhani, Mohsen & Ahmadi, Alireza, 2017. "Computational modeling of a BIPV/T ethylene tetrafluoroethylen (ETFE) cushion structure roof," Energy, Elsevier, vol. 133(C), pages 998-1012.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:998-1012
    DOI: 10.1016/j.energy.2017.05.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217309027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Xiao & Li, Jing & Jiao, Dongsheng & Gao, Datong & Pei, Gang, 2020. "Temperature-dependent performance of amorphous silicon photovoltaic/thermal systems in the long term operation," Applied Energy, Elsevier, vol. 275(C).
    2. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Li, Qingxiang & Zanelli, Alessandra, 2021. "A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Li, Jing & Ren, Xiao & Yuan, Weiqi & Li, Zhaomeng & Pei, Gang & Su, Yuehong & Kutlu, Çağrı & Ji, Jie & Riffat, Saffa, 2018. "Experimental study on a novel photovoltaic thermal system using amorphous silicon cells deposited on stainless steel," Energy, Elsevier, vol. 159(C), pages 786-798.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:998-1012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.