IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp557-571.html
   My bibliography  Save this article

Development of a dual-tracking technique for extracting maximum power from PV systems under rapidly changing environmental conditions

Author

Listed:
  • Jately, V.
  • Arora, S.

Abstract

Maximum power point tracking (MPPT) is the back bone of most photovoltaic (PV) systems. The MPPT technique helps in extracting the maximum power available from a PV panel under varying atmospheric and load conditions. As the environmental conditions fluctuate throughout the day, maximum power point tracker along with the power converter forces the PV panel to deliver maximum power to the load. Performance indices like speed of convergence, accuracy, steady state losses, implementation complexity, cost, etc. determine the overall suitability of a maximum power point tracking technique. Researchers have proposed different techniques to achieve fast and accurate tracking of the maximum power point (MPP). Among these techniques, hill-climbing based algorithms are widely used for commercial and industrial applications. In this paper, the authors have developed an efficient dual-tracking MPPT technique for rapidly changing atmospheric conditions. A comparative performance analysis of several conventional MPPT techniques and this dual-tracking technique has been carried out in Matlab/Simulink environment. Validation of the proposed technique has been done by comparing its energy yield with that of a recent single-tracking technique reported in literature under a typical one-day irradiance profile. The same irradiance profile has been used to show the economic gain of the technique.

Suggested Citation

  • Jately, V. & Arora, S., 2017. "Development of a dual-tracking technique for extracting maximum power from PV systems under rapidly changing environmental conditions," Energy, Elsevier, vol. 133(C), pages 557-571.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:557-571
    DOI: 10.1016/j.energy.2017.05.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730806X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    2. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    3. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Zhang, Xiaoshun & Li, Shengnan & He, Tingyi & Yang, Bo & Yu, Tao & Li, Haofei & Jiang, Lin & Sun, Liming, 2019. "Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition," Energy, Elsevier, vol. 174(C), pages 1079-1090.
    5. Sakshi Sharma & Vibhu Jately & Piyush Kuchhal & Peeyush Kala & Brian Azzopardi, 2023. "A Comprehensive Review of Flexible Power-Point-Tracking Algorithms for Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 16(15), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:557-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.