IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp306-316.html
   My bibliography  Save this article

Numerical modeling of a proton exchange membrane fuel cell with tree-like flow field channels based on an entropy generation analysis

Author

Listed:
  • Damian-Ascencio, Cesar E.
  • Saldaña-Robles, Adriana
  • Hernandez-Guerrero, Abel
  • Cano-Andrade, Sergio

Abstract

This paper presents a three-dimensional numerical modeling of a PEM fuel cell with tree-like flow field channels. Four different tree-like configurations are considered for the study based on a statistical analysis of the veins of the leaves of different trees. The number of bifurcations of the vein and their inclination are considered as parameters for the characterization. Four different configurations are the most recurrent, corresponding to one level of bifurcation at 37° and 74° and two levels of bifurcation at 37° and 74°. The model considers a complete solution of the mass, momentum, energy, and electrochemical equations. An entropy generation analysis is developed as a post processing once the solution of the models is obtained. Because new geometries for the channel configuration in the bipolar plates are introduced, special attention is considered for the entropy generation due to mass flow. Results indicate that the configuration with two levels of bifurcation at 37° is efficient at removing water from the cathode channels, resulting in a good current density production. In addition, a better performance of the PEM fuel cell (higher current density production and lower entropy production) is obtained by increasing the number of bifurcations.

Suggested Citation

  • Damian-Ascencio, Cesar E. & Saldaña-Robles, Adriana & Hernandez-Guerrero, Abel & Cano-Andrade, Sergio, 2017. "Numerical modeling of a proton exchange membrane fuel cell with tree-like flow field channels based on an entropy generation analysis," Energy, Elsevier, vol. 133(C), pages 306-316.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:306-316
    DOI: 10.1016/j.energy.2017.05.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dabiri, Soroush & Hashemi, Mohammadreza & Rahimi, Mohammadfazel & Bahiraei, Mehdi & Khodabandeh, Erfan, 2018. "Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell," Energy, Elsevier, vol. 152(C), pages 719-731.
    2. Wang, Yulin & Wang, Xiaoai & Fan, Yuanzhi & He, Wei & Guan, Jinglei & Wang, Xiaodong, 2022. "Numerical Investigation of Tapered Flow Field Configurations for Enhanced Polymer Electrolyte Membrane Fuel Cell Performance," Applied Energy, Elsevier, vol. 306(PA).
    3. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Marco Mariani & Andrea Basso Peressut & Saverio Latorrata & Riccardo Balzarotti & Maurizio Sansotera & Giovanni Dotelli, 2021. "The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 14(24), pages 1-17, December.
    5. Chen, Ke & Chen, Wenshang & Zou, Guofu & Chen, Ben, 2024. "Intelligent optimization: Novel application of PCC, MCDM, and ANN + NSGA-III in integrated optimization of the flow field and porous layer structures for unitized regenerative fuel cell," Applied Energy, Elsevier, vol. 374(C).
    6. Bai, Xingying & Luo, Lizhong & Huang, Bi & Huang, Zhe & Jian, Qifei, 2021. "Flow characteristics analysis for multi-path hydrogen supply within proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 301(C).
    7. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    8. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    9. Li, Haowen & Yang, Huachao & Xu, Chenxuan & Yan, Jianhua & Cen, Kefa & Ostrikov, Kostya (Ken) & Bo, Zheng, 2022. "Entropy generation analysis in supercapacitor modules based on a three-dimensional coupled thermal model," Energy, Elsevier, vol. 244(PB).
    10. Li, Haowen & Yang, Huachao & Yan, Jianhua & Cen, Kefa & Ostrikov, Kostya (Ken) & Bo, Zheng, 2022. "Energy and entropy generation analysis in a supercapacitor for different operating conditions," Energy, Elsevier, vol. 260(C).
    11. Sadiq T. Bunyan & Hayder A. Dhahad & Dhamyaa S. Khudhur & Talal Yusaf, 2023. "The Effect of Flow Field Design Parameters on the Performance of PEMFC: A Review," Sustainability, MDPI, vol. 15(13), pages 1-62, June.
    12. Machado, Bruno S. & Mamlouk, Mohamed & Chakraborty, Nilanjan, 2020. "Entropy generation analysis based on a three-dimensional agglomerate model of an anion exchange membrane fuel cell," Energy, Elsevier, vol. 193(C).
    13. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    14. Iranzo, A. & Arredondo, C.H. & Kannan, A.M. & Rosa, F., 2020. "Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends," Energy, Elsevier, vol. 190(C).
    15. Miao, Di & Chen, Wei & Zhao, Wei & Demsas, Tekle, 2020. "Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method," Energy, Elsevier, vol. 193(C).
    16. Yu, Zhongshuai & Liu, Fang & Li, Chengzhang, 2023. "Numerical study on effects of hydrogen ejector on PEMFC performances," Energy, Elsevier, vol. 285(C).
    17. Li, Hong-Wei & Liu, Jun-Nan & Yang, Yue & Fan, Wenxuan & Lu, Guo-Long, 2022. "Research on mass transport characteristics and net power performance under different flow channel streamlined imitated water-drop block arrangements for proton exchange membrane fuel cell," Energy, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:306-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.