IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v117y2016ip1p190-197.html
   My bibliography  Save this article

Thermodynamic performance of Pressurized Water Reactor power conversion cycle combined with fossil-fuel superheater

Author

Listed:
  • Wibisono, Andhika Feri
  • Shwageraus, Eugene

Abstract

It is known that the Pressurized Water Reactors (PWRs), which are the most common type of nuclear reactor existing today, usually used to provide a base load electricity. In order to be able to compete with other generation types (fossil and renewables), it would be desirable to develop PWRs with flexible load following capabilities to cope with varying electricity demand, especially in deregulated markets.

Suggested Citation

  • Wibisono, Andhika Feri & Shwageraus, Eugene, 2016. "Thermodynamic performance of Pressurized Water Reactor power conversion cycle combined with fossil-fuel superheater," Energy, Elsevier, vol. 117(P1), pages 190-197.
  • Handle: RePEc:eee:energy:v:117:y:2016:i:p1:p:190-197
    DOI: 10.1016/j.energy.2016.10.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216314943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darwish, M.A. & Al Awadhi, Fatimah M. & Bin Amer, Anwar O., 2010. "Combining the nuclear power plant steam cycle with gas turbines," Energy, Elsevier, vol. 35(12), pages 4562-4571.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui, Jiuwu, 2024. "Coordinated discrete-time super-twisting sliding mode controller coupled with time-delay estimator for PWR-based nuclear steam supply system," Energy, Elsevier, vol. 301(C).
    2. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    3. Chen, Zhansheng & Wan, Teng & Zhao, Pinghui & Lei, Mingzhun & Li, Yuanjie, 2021. "Study of power conversion system for Chinese Fusion Engineering Testing Reactor," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    2. Binamer, Anwar O., 2019. "Al-Abdaliya integrated solar combined cycle power plant: Case study of Kuwait, part I," Renewable Energy, Elsevier, vol. 131(C), pages 923-937.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:117:y:2016:i:p1:p:190-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.